
Learning Enhancement Project 2019-2020

Final Report

An Introduction to
MAGMA

for Coding Theory

Eimear Byrne Giuseppe Cotardo

An interactive workshop on the computer algebra system Magma to

complement the mathematical theory of error correcting codes.

School of Mathematics and Statistics

University College Dublin
June 14, 2021

Table of Contents

1 Introduction . 3

2 Design and Intended Outcomes . 4

3 The Participants . 6

4 Delivered Outcomes . 7

4.1 In-Workshop Projects . 7

4.2 Final Projects . 9

5 Conclusions . 16

Page 1 of 16

Acknowledgements

We would like to thank Aleksandar Gubic for the IT support during the workshop. This
project was made possible through funding provided in the form of a Learning Enhancement
Project grant, awarded by Teaching & Learning at University College Dublin and funded by
the HEA and the National Forum for Teaching and Learning Enhancement.

Page 2 of 16

Chapter 1: Introduction

Coding theory is a major component of Applied Algebra. It has many applications in the
mathematics of communications, but its primary application is in designing efficient and reli-
able data transmission methods. Therefore, it has many links with other scientific disciplines,
such as electrical engineering and computer science.

The material of the module MATH30180 An Introduction to Coding Theory requires students
to work with objects from linear algebra and combinatorics and to study mathematical models
and algorithms. In order gain a concrete understanding of the theoretical content, examples
and implementations are essential. To this end, the computer algebra package Magma
provides powerful tools that allow students to create and compile computer programs and to
apply the methods they learned in class to problems with realistic parameters. It is also a
tool that educators can use to create class examples, problem sheets and check any sort of
algebraic computations.

Coding theory is often taught in mathematics departments with an emphasis on its theoretical
aspects. Associating the teaching of coding theory with a MAGMA workshop made this
module unique and more complete.

Magma is widely used by researchers of coding theory, so that having this basic knowledge
enhances the students’ further studies and enable them to apply Magma in other areas of
algebra.

Overall feedback from the students was that working with Magma did help them gain a
better insight into coding theory and improved their learning of the course material. The
workshop was implemented by the tutor, Giuseppe Cotardo, who also oversaw the project
work and handled the assessment.

Page 3 of 16

Chapter 2: Design and Intended Outcomes

The learning enhancement project took the form of a 12-hour workshop, delivered over 3
days during the study period (March 9-11,2020). Assessment comprised short daily projects
along with a longer group project to be submitted later in the semester and a presentation
to be given at the end of the semester.

This initiative aimed to introduce the students to the computational algebra system Magma
and to enhance student learning of algebraic coding theory. The software Magma is a high-
level programming language and it is designed for computations in algebra, number theory,
algebraic geometry and algebraic combinatorics and provides a mathematically rigorous en-
vironment for defining and working with structures such as groups, rings, fields, modules,
algebras, schemes, curves, graphs, designs, codes and many others.

The School of Mathematics and Statistics has a license for Magma installed on the server
Magnet. Participants were provided with an account on the server in order to use the software.
Magma also has a free online calculator that anyone can use, which was also sufficient for
the computational requirements of the workshop.

The workshop was intended to introduce students to basic programming concepts and to the
libraries of Magma relevant to coding theory and linear algebra. The Coding Theory and
Linear Algebra libraries allow users to construct finite fields and different types of families of
codes, to investigate their properties, and furthermore to implement decoding algorithms.

Making connections between theory and computation is a valuable skill in coding theory,
which is itself an application of linear algebra. Using this software, students were challenged
to explore computations to gain a deeper level of understanding of the topic that would not
be feasible without a computer. The goal was that the use of this digital resource would
act as a scaffold for student learning, enabling them to visualise and grasp difficult abstract
concepts.

Another projected outcome of this initiative was that students would increase their proficiency
in programming in Magma . This would be acquired by hands-on activity in the labs and via
project work. By the end of the semester the students would have developed skills in designing
and writing computer programs and have gained an insight into fundamental concepts and
terminology.

Finally, the initiative intended to allow the tutor to apply his extensive experience in using
Magma in a teaching context in which he played a major role. In addition, the developed
materials can be reused for future teaching.

Page 4 of 16

Figure 2.1: Workshop Poster

Page 5 of 16

Chapter 3: The Participants

About twenty students registered to Math30180 Coding Theory participated in the workshop.
Some graduate students also attended out of personal interest. Most of the participants had
little or no prior programming experience. The workshop was completed just the day before
the Covid-19 restrictions came into effect. After that, project work was carried out remotely
during the period March-May 2020. While the restrictions had an impact on the group project
work that participants were to carry out autonomously, they were extremely resourceful in
achieving their aims and they all submitted their projects. The final presentations were made
via Zoom in late May 2020.

Page 6 of 16

Chapter 4: Delivered Outcomes

The content of the workshop was coordinated with the theoretical content of MATH30180
and delivered according to the schedule in Table 4.1. In this way, students were able to
make links between their theoretical understanding of Coding Theory, which they acquired
in lectures and tutorials and concrete implementations using Magma .

Date Time Topics

10:00 - 11:50 Overview of Magma and Aggregate Structures

9 March 2020 11:50 - 13:00 Lunch Break

13:00 - 14:50 Conditional and Iterative Statements, and Functions

10:00 - 11:50 Ring and Fields

10 March 2020 11:50 - 13:00 Lunch Break

13:00 - 14:50 Vector and Matrix Spaces

10:00 - 11:50 Error-Correcting Codes

11 March 2020 11:50 - 13:00 Lunch Break

13:00 - 14:50 Error-Correcting Codes and Projects Presentation

Table 4.1: Schedule of the workshop.

The first part of the lessons were devoted to the basic programming using the software. The
tutor, Giuseppe Cotardo, introduced the topic, the relevant Magma functions and explained
how to use them. In the second part, students worked to implement code themselves, and
build up their own collection of programmes and examples. These small projects were sub-
mitted daily and form part of the assessment. Participants were then given longer group
projects to do autonomously, which were submitted on May 29th, 2020.

4.1 In-Workshop Projects

The students were asked to implement the following 5 small projects during the workshop.
For each task, we also include an example of implementation provided by the students.

Exercise 1. Compute the first twenty lines of Pascal’s triangle.

Implementation:

Pascal := [[1]];
for x in [1..19] do

new := [1];
for y in [1.. x-1] do

new := Append(new, Pascal[x][y] + Pascal[x][y+1]);
end for;
new := Append(new, 1);
Pascal := Append(Pascal, new);

end for;
Pascal;

Page 7 of 16

Exercise 2. Write a function IsFermatPseudoPrime(n) that returns true if and only if we
n−1 ≡ 1have a mod n for all 0 < a < n such that GCD(a, n) = 1.

Implementation:

function IsFermatPseudoPrime(n)
for a in [1..n-1] do

if GCD(a,n) eq 1 then
if (a^(n-1) mod n) ne 1 then

return false;
end if;

end if;
end for;
return true;

end function;

Exercise 3. Write a function Factorize(p), p prime, that returns the factorization of theQ
polynomial f(x) = xp − x − 1 ∈ Fp[x] of the form (θ + a) where θ is a root of f(x) in a∈Fp

some extension of Fp.

Implementation:

function Factorize(p)
if IsPrime(p) eq false then

return "argument must be prime";
else

P<x>:=PolynomialRing(GF(p));
f := x^p-x-1;
G<a>:=ext<GF(p)|f>;
root := Roots(f,G)[1][1];
S:=[];
for i in GF(p) do

S:= S cat [root+i];
end for;

end if;
D<x>:=PolynomialRing(G);
T:=[x-r:r in S];
return T;

end function;

Exercise 4. Write a function RotatePolynomial(f,k) that, for a given polynomial f(x) ∈
Fq[x] of degree d, return the polynomial g(x) ∈ Fq[x] of degree at most d obtained by rotating
the coefficient of f(x) by k.

Implementation:

function RotatePolynomial(f,k)
c:= Rotate(Coefficients(f),k);
g:=Parent(f)!c;
return g;

end function;

Page 8 of 16

Exercise 5. Implement the function VarshamovBound(K,n,d) that returns the Varshamov
Bound for a finite field K and integers n, d, such that 0 ≤ d ≤ n.

Implementation:

function VarshamovBound(K,n,d)
if not (Type(K) eq FldFin) then

return "The first input must be a finite field";
elif not (Type(d) eq RngIntElt) then

return "The second input must be an integer";
elif not (Type(n) eq RngIntElt) then

return "The third input must be an integer";
elif (Type(d) eq RngIntElt) and (Type(n) eq RngIntElt) and (n lt d)
,→ then

return "The third input must be less than or equal the third";
elif (Type(d) eq RngIntElt) and (Type(n) eq RngIntElt) and not (d
,→ ge 2) then

return "The third input must be greater than or equal 2";
elif (Type(K) eq FldFin) and (Type(d) eq RngIntElt) and (Type(n) eq
,→ RngIntElt) and (n ge d) and d gt 1 then

q := #K;
sum := 0;
for i in [0..(d-2)] do

sum := sum + Binomial(n-1,i) * (q-1)^i;
end for;
frac := (q^n)/(sum);
return frac;

else
return "Unknown Error";

end if;
end function;

4.2 Final Projects

As part of the assessment, the participants worked in groups on the following projects, which
involved implementation of functions for the analysis and the decoding of some codes. The
maximum score of each project was related to its level of difficulty, from a minimum of 2
points to a maximum of 5 points. The students chose their preferred project and worked with
their group on its implementation, which was then submitted as a report containing any code
used as well as a description of the underlying theory. The report also included comments on
the code, any difficulties encountered during implementation and the solutions they found to
these issues.

During the workshop, we agreed with the students to have an extra meeting, after the sub-
mission in order to give the groups the opportunity to briefly present their work to the other
participants. Due to the pandemic and the consequent impossibility to physically meet in
the university, the final presentations were done virtually. This was included as part of the
assessment.

Page 9 of 16

4.2.1 Project 1 [2pt]

Implement a function which, for a given a code C, returns some properties of the code, i.e.
Is C MDS? Is C perfect? Is C self-dual? Is C a divisible code? Etc.

Compare the outputs with the function already implemented in Magma, like IsMDS, IsPerfect,
IsSelfDual, etc.

A divisible code C is a code such that there exist a constant c which divides all the weights
of C.

4.2.2 Project 2 [2pt]

Implement the following functions.

1. Puncture(C,i):

INPUT: An Fq − [n, k, d] linear code C and an integer 1 ≤ i ≤ n.
OUTPUT: The code C 0 obtained by puncturing the i-th coordinate from

each codeword of C.

2. Shorten(C,i):

INPUT: An Fq − [n, k, d] linear code C and an integer 1 ≤ i ≤ n.
OUTPUT: The code C obtained by shortening the i-th coordinate from

each codeword of C.

Compare the outputs of your functions with them of the functions PunctureCode(C,i) and
ShorthenCode(C,i), already present in Magma.

4.2.3 Project 3 [2pt]

Implement the following functions.

1. Sum(C,D):

INPUT: An Fq − [n, k1, d1] linear code C and an Fq − [n, k2, d2] linear
code D.

OUTPUT: The direct sum code E of C and D.

2. Plotkin(C,D):

INPUT: An Fq − [n, k1, d1] linear code C and an Fq − [n, k2, d2] linear
code D.

OUTPUT: The Plotkin sum code E of C and D.

Compare the outputs of your functions with them of the functions DirectSum(C,D) and
PlotkinSum(C,D), already present in Magma.

Page 10 of 16

4.2.4 Project 4 [3pt]

Investigate the properties of the [23, 12, 7] Golay code and of the [24, 12, 8] extended Golay
code over F2. Compute their weight distribution. Are they divisible-codes? Compare the
properties of the two codes. Do they attain any bound? Etc.

A divisible code C is a code such that there exist a constant c which divides all the weights
of C.

4.2.5 Project 5 [3pt]

Implement a function that simulate a transmission of a message through a noisy channel.

INPUT: A message vector m ∈ Fk and an Fq − [n, k, d] linear code C.q
OUTPUT: The message vector m, the code C, the codeword c associated to

m, the received vector r and a string which says if the decoding
was successful of not. In case of successful decoding, the function
should also return the error vector e and the decoded word c.

Compare the outputs of your functions with them of the function Decode(C,y), already
present in Magma.

4.2.6 Project 6 [4pt]

An Hadamard matrix H2n is a 2n × 2n square matrix whose entries are either +1 or −1
and whose rows are mutually orthogonal. H2n satisfies H2n H2

t
n = 2nI2n . It is possible to

construct an Hadamard matrix recursively. Indeed, � �
H2n−1 H2n−1

H2n =
H2n−1 −H2n−1

with H1 = [1].

Implement a function that construct the 2n × 2n Hadamard matrix using the recursive ap-
proach explained above.

INPUT: An integer n.
OUTPUT: The Hadamard matrix H2n .

, 2n+1It it possible to construct a non-linear F2 −(2n , 2n−1) code C using an Hadamard matrix
H2n . The 2n+1 codewords of C are the rows of H2n and the rows of −H2n . Notice that to
obtain the binary code C, the mapping −1 7→ 1, 1 7→ 0 is applied to the matrix elements.

, 2n+1Implement a function that return the F2 − (2n , 2n−1) Hadamard code C.

INPUT: An integer n.
OUTPUT: The Hadamard code C.

Page 11 of 16

Investigate the properties of these code for some values of n. Are they MDS? Are they
perfect? Are they divisible codes? Etc.

4.2.7 Project 7 [5pt]

Implement the algorithm below for decoding the F2 − [24, 12, 8] extended Golay code C with
generator matrix G = [I|B].

INPUT: A received vector r ∈ F24
2 .

OUTPUT: The codeword c obtained by decoding r and the error vector e in
case of successful decoding. A request for retransmission, other-
wise.

Let e = (eL|eR) be the error vector. Notice that, since C is self-dual, G is also a parity-check
matrix for C. Therefore, we can easily compute two different syndromes:

S1(e) = eHt = (eL|eR)(Bt|I12)t = eLB + eR

S2(e) = eGt = (eL|eR)(I12|B)t = eL + eRB
t

Notice that S2(e) = S1(e)B
t .

ALGORITHM:

1. Compute the syndrome S1(r) = rHt = r(Bt|I12)t .

(a) If wt(S1(r)) ≤ 3, then the error vector is e = (0|S1(r)) and you can decode.

(b) If wt(S1(r)) > 3, then compute wt(S1(r) + Bi) for all i = 1, . . . , 12, where Bi is
the i-th row of B.

i. If wt(S1(r) + Bi) ≤ 2 for some i, then the error vector is e = (S1(r) + Bi|δi),
where δi is the vector in F24 with 1 in position i and 0 elsewhere. You can2
decode.

ii. If wt(S1(r) + Bi) ≤ 2 for more than one i, choose the one(s) with smallest
Hamming weight and decode as in point (1)(b)(i).

2. If wt(S1(r) + Bi) ≥ 3 for all i = 1, . . . , 12, then compute the syndrome S2(e).

(a) If wt(S2(r)) ≤ 3, then the error vector is e = (S2(r)|0) and you can decode.

(b) If wt(S2(r)) > 3, then compute wt(S2(r) + Bi) for all i = 1, . . . , 12.

i. If wt(S2(r) + Bi) ≤ 2 for some i, then the error vector is e = (δi|S2(r) + Bi),
and you can decode.

ii. If wt(S2(r) + Bi) ≤ 2 for more than one i, choose the one(s) with smallest
Hamming weight and decode as in point (2)(b)(i).

3. If e is not determined (i.e. if wt(S1(r)) > 3, wt(S2(r)) > 3, wt(S1(r) + Bi) ≥ 3 and
wt(S2(r) + Bi) ≥ 3 for all i = 1, . . . , 12), then request retransmission.

4.2.8 Project 8 [5pt]

P � � r mLet C be an F2 − [2m, k, 2m−r] Reed-Muller code, where k = . Let V the list ofi=0 i
the elements of Fm sorted by lexicographic order, K hx1, . . . , xmi the multivariate polynomial 2

Page 12 of 16

ring over F2 with m variables. Every vector y ∈ F2m
can be represented as2

y = (f(V1), f(V2), . . . , f(V2m))

for a suitable f ∈ K hx1, . . . , xmi. Notice that f is of the form

mX X Y
f(x1, . . . , xm) = fS xi with fS ∈ F2 for all S ⊆ {1 . . .m}.

t=0 S⊆{1...m},|S|=t i∈S

Implement the Majority Logic Decoder for Reed Muller codes.

INPUT: The received vector y, the parameters r, m of C, the list V defined
above.

OUTPUT: The codeword c obtained by decoding y.

For a subset S of {1, . . . ,m}, a vector a ∈ Ft and a vector b ∈ Fm−t , we define the vector 2 2
vS,a,b of length m whose coordinates in S are given by a and the remaining by b.

ALGORITHM:

1. Find the polynomial f ∈ K hx1, . . . , xmi such that

y = (f(V1), f(V2), . . . , f(V2m))

2. Initialize p ∈ K hx1, . . . , xmi to be 0 and t = r.

3. Do the following for t ≥ 0.

(a) Set ft = f − p

(b) Do the following for every subset S of {1, . . . ,m} with S = t.

i. Create an empty list LS .
ii. Do the following for every b ∈ Fm−t .2

‹ Compute the vector vS,a,b.
‹ Compute the value X

CS,b := ft(vS,a,b).
a∈FT

2

‹ Store the value CS,b in the list LS .
iii. Compute the value CS as following. Set CS := 1 if the number of 1s is greater

or equal then the number of 0s in LS , set CS := 0 otherwise.Q
iv. Set p := p − CS i∈S xi.

4. Return the vector c := (p(V1), p(V2), . . . , p(Vm)) if c ∈ C. Ask for a retransmission
otherwise.

4.2.9 Project 9 [5pt]

Let C be an Fqm − [qm − 1, k, d] Reed-Solomon code and let {1, α, α2 , . . . , αqm−2} a set of
evaluation point, where α is a primitive element of Fqm /Fq. Let r a received vector, then we
think of y as the set of ordered pairs {(1, r1), (α, r2), . . . , (αqm −2, rqm−1)}

Page 13 of 16

Implement the Welch-Berlekamp algorithm for decoding Reed-Solomon codes, under the as-
sumption that we know the weight of the error vector e.

INPUT: wt(e) < t and the ordered pairs {(αi−1, ri}q
m−1 associated to the i=1

received vector r.
OUTPUT: The codeword c obtained by decoding r or a request of retransmis-

sion.

ALGORITHM:

1. Compute the polynomial E(x) of degree wt(e) and the polynomial Q(x) of degree
wt(e) + k − 1 such that

yiE(αi−1) = Q(αi−1)

for all i = 1, . . . , qm − 1.

2. If E(x) and Q(x) as above do not exist or E(x) does not divide Q(x), then ask for a
retransmission.

Q(x)3. If E(x) and Q(x) as above exist and E(x) divides Q(x), than set P (x) := .E(x)

4. Create the vector p := (P (1), P (α), . . . , P (αqm−1)).

5. If d(y, p) ≤ wt(e) then return p as the decoded codeword. Otherwise, ask for a retrans-
mission.

4.2.10 Project 10 [5pt]

Let C be an F2 − [2m − 1, k, d] BCH code and α be a primitive element of F2m /F2, i.e.P2m−1 iF[α] = F2m . Define for every vector v ∈ F2m−1 the polynomial fv(x) := vix . Suppose 2 i=0
the received vector r, then the syndrome vector if

s := (fr(α), fr(α
2), . . . , fr(α

2t))

where t is the correction capability of C.

Implement a decoding algorithm for binary BCH codes based on the Berlekamp-Massey
algorithm.

INPUT: The received vector r, the correction capability.
OUPUT: A codeword c obtained by decoding r or a request for retransmission.

Given the syndrome vector s, the Berlekamp-Massey algorithm finds the associated locator
polynomial

c(x) := c0 + c1x + . . . + c2m−1x 2
m −1 ∈ F2m [x].

The roots of this polynomial give information about the location of errors. In particular, if
αi is a root for c(x) then there is an error in r in position j where αj = (αi)−1 .

ALGORITHM:

1. Find the syndrome vector s associated to r.

Page 14 of 16

2. Initialize the following parameters:

‹ L = 0, it represent the length of the LFSR;

‹ c(x) = 1, it will be the locator polynomial;

‹ p(x) = 1, it represent the locator polynomial before last length change;

‹ l = 1, it represent the amount of shift in update;

‹ dm = 1, it represent the previous discrepancy.

3. Do the following for k = 1, . . . , 2t in steps of 2 (i.e. k = 1, 3, . . .).

(a) Compute the discrepancy
LX

d := sk + cisk−i.
i=1

(b) If d = 0 then increase the shift l by 1.

(c) If d 6= 0 then
li. If 2L ≥ k then set c(x) = c(x) − dd−1x p(x) and increase the shift l by 1.m

ii. Otherwise, temporary store the polynomial p(x), that is define t(x) = c(x),
lset c(x) = c(x) − dd−1x p(x) and then p(x) = t(x). Finally, set L = k − L,m

dm = d and l = 1.

Increase the shift l by 1 and go back to point (3).

4. Find the multiplicative inverse of the roots of c(x).

5. Compute the error vector and decode.

6. If the decoded vector is not a codeword of C, then ask for a retransmission.

Page 15 of 16

Chapter 5: Conclusions

This initiative added a concrete dimension to strengthen the teaching of an abstract topic. It
gave students the opportunity to gain experience in programming and to develop new skills
that can be applied in different areas and in different projects, such as the final year project.

At the end of the semester, students were asked to fill a survey on the quality of the workshop
and scope to give suggestions on how to improve it in future. Overall, 72% of participants
recommended that the workshop should run again in the future. About half of the students
agreed that they gained a better understanding of coding theory via using Magma . Some
90% of participants found the group project to be beneficial, while 82% agreed that it gave
them an opportunity to explore a coding theoretic topic more deeply. Just 45.5% of stu-
dents thought that sufficient time was dedicated to each project and the same percentage
thought that the overall duration of the workshop was sufficient. Finally, 91% of participants
agreed that the teaching in the workshop stimulated their interest in the subject matter.
If this initiative was to run again, these suggestions would be taken into consideration and
incorporated into its design.

Page 16 of 16

	Table of Contents
	Introduction
	Design and Intended Outcomes
	The Participants
	Delivered Outcomes
	In-Workshop Projects
	Final Projects
	Project 1 [2pt]
	Project 2 [2pt]
	Project 3 [2pt]
	Project 4 [3pt]
	Project 5 [3pt]
	Project 6 [4pt]
	Project 7 [5pt]
	Project 8 [5pt]
	Project 9 [5pt]
	Project 10 [5pt]

	Conclusions

