
Quantum Work Statistics across a Critical Point: Full Crossover
from Sudden Quench to the Adiabatic Limit

Zhanyu Ma ,1 Andrew K. Mitchell ,2,3 and Eran Sela 1

1Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
2School of Physics, University College Dublin, Belfield, Dublin 4, Ireland

3Centre for Quantum Engineering, Science, and Technology, University College Dublin, Dublin, Ireland

(Received 31 December 2024; accepted 3 September 2025; published 25 September 2025)

When an external parameter drives a system across a quantum phase transition at a finite rate, work is
performed on the system and entropy is dissipated, due to creation of excitations via the Kibble-Zurek
mechanism. Although both the adiabatic and sudden-quench limits have been studied in detail, the
quantum work statistics along the crossover connecting these limits has largely been an open question.
Here, we obtain exact scaling functions for the work statistics along the full crossover from adiabatic to
sudden-quench limits for critical quantum impurity problems, by combining linear response theory,
conformal field theory, and the numerical renormalization group. These predictions can be tested in charge-
multichannel Kondo quantum dot devices, where the dissipated work corresponds to the creation of
nontrivial excitations such as Majorana fermions or Fibonacci anyons.
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Universality emerges near classical or quantum phase
transitions and determines equilibrium as well as non-
equilibrium properties [1]. For example, when a system is
driven in a finite amount of time across a quantum critical
point (QCP), excitations are created at a rate dictated by
Kibble-Zurek (KZ) scaling [2,3]. Universal nonequilibrium
behavior is also found in the sudden-quench (impulse)
limit, when a system is subjected to an abrupt change in
parameters [4].
Such nonequilibrium processes can be characterized by

the work done on the system [5–7]. The full work
distribution function (WDF) contains rich information
about the nonequilibrium state of a system, including
quantum coherence effects, and satisfies fluctuation theo-
rems such as Jarzynski’s equality [8]. Recently, the funda-
mental properties of the WDF for quantum many-body
systems have been the subject of intense study. In particu-
lar, the irreversible work in the sudden limit is known to
diverge at a QCP like a susceptibility [9–13]. Away from
the sudden limit, general statements about entropy pro-
duction can be made [14], and in the adiabatic limit of slow
driving, the full WDF can be calculated because the system
remains close to equilibrium [15]. In this case, quantum
coherence is shown to induce non-Gaussianity in the WDF,
and the implications of this for Landauer information
erasure have been explored [16,17]. Interestingly, only
the higher moments of the WDF display quantum coherent
effects. Non-Gaussian WDFs have also been observed for
finite systems away from the adiabatic limit [18,19].
However, exact results for the WDF of true quantum
many-body systems along the full crossover from the
sudden-quench limit, through the KZ regime, to the

adiabatic limit have proved elusive. This is because
strongly correlated quantum critical systems, in the thermo-
dynamic limit and out of equilibrium, are notoriously
difficult to treat—either analytically or numerically.
One promising route forward is to consider the linear

response (LR) regime, in which a weak perturbation is
applied to a critical system. This has the advantage that
nonequilibrium properties can be related to equilibrium
correlation functions, with no restriction on the time τ over
which the driving is applied—from sudden (τ → 0) all the
way through to adiabatic (τ → ∞). The system-environ-
ment coupling can also be strong.
Remarkable experiments with quantum dot (QD) devices

[20–25] have demonstrated that the WDF can be extracted
in the classical regime by driving the QD gate voltage while
performing a weak continuous measurement of the QD
charge. However, the WDF has not been measured in the
quantum regime of such systems. In particular, the WDF
across a quantum phase transition in the KZ regime has not
yet been considered. QD devices may be a uniquely
appealing platform to study critical quantum work statis-
tics, since generalized quantum impurity models that
support nontrivial QCPs can be realized and probed
experimentally [26–32]. Indeed, the required gate voltage
control and measurement of the QD charge is possible in
these kinds of system [33,34].
Motivated by this, here we develop a theory of the

quantum work statistics of boundary critical models,
exploiting universality of the QCP to obtain exact results
in the case of a weak perturbation applied in finite time. We
apply this to Kondo models describing recent QD experi-
ments and confirm our predictions using numerical renorm-
alization group (NRG) calculations [35–38].
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Setup—We consider a generic open quantum system
setup, consisting of a system S coupled to an environment
E; see Fig. 1(a). The full, unperturbed Hamiltonian is
Ĥ0 ¼ ĤS þ ĤE þ ĤSE , where ĤSE describes the coupling
between the system and environment. Suppose that S and E
share a conserved charge N̂ ¼ N̂S þ N̂E such that
½Ĥ0; N̂� ¼ 0, although N̂S can, of course, fluctuate. We
then apply a perturbation coupling locally to the charge of
the system ĤðtÞ ¼ Ĥ0 þ λðtÞN̂S , where the work param-
eter λðtÞ ¼ At=τ is ramped up from λ ¼ 0 to λ ¼ A over a
finite time duration τ by an external agent [39]. Our main
focus will be the dissipated work Wdiss ¼ W − ΔF irre-
versibly spent to drive the system out of equilibrium from
an initial thermal state [10,40]. Here, W is the stochastic
quantum work defined through a two-time projective
energy measurement at the beginning and end of the
driving [41], and ΔF ¼ FðτÞ − Fð0Þ is the change in
equilibrium free energy at the initial temperature T. The
WDF provides a complete stochastic thermodynamic
description of the process [41]:

PðWÞ ¼
X
mτ;n0

hn0jρ0jn0ipmτjn0δðW − Emτ
þ En0Þ: ð1Þ

Here, ρ0 is the initial thermal state and pmτjn0 ¼
jhmτjUτjn0ij2 are the conditional probabilities, where we
have used the instantaneous spectral decomposition
ĤðtÞ ¼ P

n Ent jntihntj. The final (nonequilibrium) state

of the system ρτ ¼ Uτρ0U
†
τ is obtained from the time-

evolution operator Uτ. In the adiabatic limit pmjn ¼ δmn,
whereas in the sudden limit pmτjn0 ¼ jhmτjn0ij2. The
behavior for finite-time driving is highly nontrivial. This

standard definition of the quantum work satisfies the
fluctuation theorems [41] and is closely related to the
irreversible entropy [42,43]. For a discussion of alternative
formulations, see, e.g., Refs. [44,45].
One can obtain the n th moment of the WDF hWni ¼

ð−1Þn½dn=dun�hðuÞju¼0 from the generating function
hðuÞ ¼ R

dWPðWÞe−uW , where [41]

hðuÞ ¼ Tr½U†
τe−uðĤ0þAN̂SÞUτe−ðβ−uÞĤ0 �=Z: ð2Þ

Useful results in the sudden-quench limit τ → 0 follow
immediately from the Zassenhaus formula [13,46]:

hWni ¼ AnhN̂n
Si0 þ δQn; ð3Þ

where the first term is a purely classical contribution and
δQn is a correction coming from quantum coherences.
Interestingly, δQ1 ¼ δQ2 ¼ 0 such that the first two
moments do not contain information on the inherently
quantum part of the work. For the third moment
[46], δQ3¼ðA2=2Þh½N̂S; ½Ĥ0;N̂S��i0¼−ðA2=2ÞTr½ρ0ĤSE �.
Higher moments involve more complicated nested
commutators.
Such a splitting into classical and quantum contributions

has also been discussed in other settings [17,50–52].
Work statistics for a noninteracting QD—As the sim-

plest example, we consider driving the potential ϵdðtÞ≡λðtÞ
of a spinless single-level QD (the system S) connected to a
metallic lead (the environment E). The QD-lead system
is described by the resonant-level model (RLM),
ĤðtÞ ¼ ϵdðtÞd†dþP

k ϵkc
†
kck þ ĤSE , where the QD-lead

coupling ĤSE ¼ P
kðVkc

†
kdþ H:c:Þ allows the QD elec-

tron number n̂ ¼ d†d≡N̂S to fluctuate.
At high temperatures T ≫ Γ, where Γ ¼ πν

P
k jVkj2 is

the level width and ν is the density of lead states at the
Fermi energy, the dynamics is described by a master
equation. Denoting the probability that the level is empty
or occupied by p0 and p1, respectively, we have
ṗ1 ¼ Γ[p0f½ϵdðtÞ� − p1f1 − f½ϵdðtÞ�g], where fðϵÞ ¼
ð1þ eϵ=TÞ−1 is the Fermi distribution. Depending on the
stochastic trajectories nðtÞ, which classically jump between
0 and 1, the work is obtained in experiments from
W ¼ R

τ
0 dt½dϵd=dt�nðtÞ. Using this definition, and with

real-time charge detection of the QD, the full WDF has
been extracted in the classical regime in various experi-
ments [20–25]. As observed experimentally [22], in the
sudden limit τΓ ≪ 1 the WDF acquires the line shape of
two sharp peaks, PðWÞ¼hn̂i0δðW−AÞþð1−hn̂i0ÞδðWÞ.
The corresponding moments follow as hWni ¼ Anhn̂i0.
These are precisely the classical contributions to the work
statistics in the sudden limit from Eq. (3) (i.e., δQn ¼ 0).
At lower temperatures, we expect quantum corrections.

Even though the RLM is a very simple model (noncritical,
noninteracting), the QD and lead states do become

FIG. 1. (a) System S and environment E are coupled but share a
conserved charge. In a quantum dot setup, the dot spin (red) can
be flipped with a compensating spin flip of an electron in the lead
(blue). We consider the dissipated work, due to a weak pertur-
bation λðtÞ such as a magnetic field, ramped in a finite time τ.
(b) Multichannel Kondo systems exhibit quantum critical physics
and universality in the intermediate regime T� < T < TK , where
TK is the Kondo temperature and T� → 0 at the QCP. (c) We
obtain the full, universal crossover from sudden-quench to the
adiabatic limit, including the intermediate KZ regime.
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entangled and the dynamics is non-Markovian. Computing
the exact result for the third moment of the quantum WDF,
we get a term beyond that captured by the master equation,
δQ3 ¼ − 1

2
A2Tr½ρ0ĤSE �. For the RLM, exact expressions

for hn̂i0 and hĤSEi0 can be easily obtained using Green’s
function methods [46].
Linear response—Within LR (small A limit), the WDF

can be obtained from the relaxation function [49]:

Ψ0ðtÞ ¼ β

Z
β

0

dshN̂Sð−isÞN̂SðtÞi0 − β2hN̂Si20; ð4Þ

where N̂SðtÞ ¼ eiH0tN̂Se−iH0t. Determining the relaxation
function is, in general, nontrivial. However, we find that its
Fourier transform Ψ̃0ðωÞ ¼

R
dtΨ0ðtÞeiωt is simply related

[46] to the standard correlation function:

Ψ̃ðωÞ ¼ 2

ωT
Im χðωÞ þ cðTÞ

T
2πδðωÞ; ð5Þ

where χðωÞ≡⟪N̂S; N̂S⟫ω is itself the Fourier transform of
the retarded function χðtÞ ¼ iθðtÞTrfρ0½N̂SðtÞ; N̂S�g. We
find that cðTÞ ¼ 0 when the environment has a continuous
gapless spectrum—as for all systems we consider. In this
case, cumulants of the WDF can be expressed as

κnW
A2

¼
�R

dω
2π ω

n−2sinc2ðωτ
2
Þ ImχðωÞ ∶n odd;R

dω
2π ω

n−2sinc2ðωτ
2
Þcothð ω

2TÞ ImχðωÞ ∶n even
ð6Þ

with sincðxÞ≡ sin x=x. In particular, κ1W≡hWdissi is the
expected dissipated work, and κnW ¼ hðWdiss − hWdissiÞni
are the central moments of Wdiss for n ¼ 2, 3.
For the RLM describing a noninteracting QD, Im χðωÞ

can be obtained exactly, and the resulting behavior of
hWdissi is plotted in Fig. 2(a) along the full crossover from
sudden to adiabatic at different temperatures.

Richer behavior of the work statistics can be expected in
strongly correlated systems, especially near a QCP.
Charge-Kondo circuits—Nanoelectronic circuits incor-

porating hybrid metal-semiconductor components perform
as essentially perfect experimental quantum simulators of
multichannel Kondo models [29–33]. Near-degenerate
macroscopic charge states jNi and jN þ 1i on a capacitive
metallic island act as a charge pseudospin-1

2
degree of

freedom Ŝd (the system S) that is flipped by tunneling at
quantum point contacts to M metallic leads (the environ-
ment E). The charge M-channel Kondo (CMCK) model
reads [53] Ĥ0 ¼ BŜzd þ

P
M
m¼1

P
kσ ϵkc

†
mkσcmkσ þ ĤSE ,

where here the system-environment coupling is ĤSE ¼
JðŜþd ŝ−c þ H:c:Þ and ŝ−c ¼ P

m

P
kk0 c

†
mk↓cmk0↑. The effec-

tive magnetic field B biases the island charge states and is
controlled in practice by a gate voltage. These models are
highly non-Markovian open quantum systems in which
strong, multipartite system-environment entanglement
builds up at low temperatures T ≪ TK, where TK is the
Kondo temperature [54]. TheM ¼ 1 version, referred to as
C1CK, is a noncritical system with a Fermi liquid ground
state. All M > 1 models, referred to as C2CK, C3CK, etc.,
display boundary critical phenomena due to frustrated
Kondo screening of the island charge pseudospin. At the
QCP (B ¼ 0), the C2CK model is described by an effective
Majorana RLM [31,55], but finite B induces a crossover
scale T� ∼ B2=TK; see Fig. 1(b). For C3CK, the island
hosts a free Fibonacci anyon [56]. M ¼ 1, 2, 3 versions
have been realized experimentally [29,30,33].
We analyze the quantum work statistics resulting from

driving the effective field in finite time by varying the
island gate voltage, where now N̂S ¼ Ŝzd and λðtÞ ¼ At=τ
as before. Our previous results [Eqs. (3) and (6)] are general
and carry over. All nontrivial information is, therefore,
contained in the impurity dynamical spin susceptibility
χðωÞ ¼ ⟪Szd; S

z
d⟫ω. In the sudden limit, the first three

(a) (b) (c) (d)

FIG. 2. Crossover in the dissipated work hWdissi due to a weak perturbation λðtÞ ¼ At=τ ramped over a finite time τ, from sudden-
quench to adiabatic limits, for noncritical (a), (b) and critical (c), (d) quantum dot systems. (a) Spinless resonant level model describing a
noninteracting quantum dot, subject to a ramp of the dot potential λðtÞ≡ϵdðtÞ; see the inset. (b)–(d) Multichannel Kondo models with
M ¼ 1, 2, 3 channels, respectively, subject to finite-time driving of the magnetic field λðtÞ≡BðtÞ (results obtained by NRG using
J ¼ 0.08D). Such models describe charge-Kondo circuits with a metallic island coupled to M leads; see the insets. Dashed lines in (c)
and (d) are the CFT scaling predictions derived from Eq. (B1). Shown for different temperatures T=Λ ¼ 10n with n ¼ −5 � � � þ 2 for
black, magenta, blue, brown, green, orange, purple, and cyan lines (Λ ¼ Γ for RLM and TK for CMCK).
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moments can be obtained from the observables hŜzdi and
hŜþd ŝ−c þ Ŝ−d ŝ

þ
c i. These must be computed in the full (lead-

coupled but equilibrium) CMCK models.
C1CK model—Work statistics for the single-channel

charge-Kondo model are obtained as above from
Im χðωÞ computed from NRG [35–38]. The system is non-
critical, and so we find that hWdissi shown in Fig. 2(b)
behaves similarly to the RLM, despite being now a strongly
interacting model—except the C1CK scaling is in terms of
the emergent Kondo temperature TK rather than the bare
hybridization Γ of the RLM. Further results in the sudden
limit are discussed below in connection with Fig. 3.
Dissipated work across a QCP—Figures 2(c) and 2(d)

for the C2CK and C3CK models show the evolution of the
dissipated work along the crossover from sudden to
adiabatic when driving across the multichannel Kondo

critical point. From NRG results, we find universal scaling
collapse in the KZ regime at intermediate driving times
T=TK ≪ τT ≪ 1, with hWdissi folding progressively onto a
universal curve in both cases over a wider range of τ as the
temperature T is decreased. For τTK ≪ 1, the behavior
departs again from KZ scaling and approaches the sudden
limit. Note that signatures of the QCP show up in all
moments of both the dissipated work and the work itself.
Exact results for the KZ and adiabatic scaling regimes
(dashed lines) will be discussed in the following.
Universal results for boundary QCPs—For C2CK and

C3CK models, the multichannel Kondo critical points are
described [54] by boundary conformal field theory (CFT).
Importantly, we find the relaxation function is restricted to
take a conformal-invariant form near the QCP:

Ψ0ðtÞ ¼ β

Z
β

0

ds
1

Λ2Δ

�
π=β

sin π
β ðsþ itÞ

�
2Δ
; ð7Þ

where Δ is the scaling dimension of the operator N̂S at the
QCP (here, Ŝzd). This result applies for any QCP described
by a boundary CFT, independently of its central charge.
This universal form applies for driving times τ much larger
than the short timescale Λ−1 associated with the QCP (for
CMCK models, the role of the cutoff Λ is played by the
Kondo temperature TK)—but it can be either large or small
compared to the inverse temperature β ¼ 1=T. From
Eq. (7), one can write Ψ0ðtÞ ¼ β2−2ΔfΨðt=βÞ, where
fΨðxÞ is some scaling function. This implies universal
scaling of the work statistics for driving across the QCP,
controlled only by the scaling dimension Δ. For CMCK
models where N̂S≡Ŝzd, the scaling dimension of the
impurity magnetization in the universal regime is Δ ¼
2=ð2þMÞ for M ≥ 2.
Equations (6) and (7) are general and allow the work

statistics in LR to be obtained for any critical system
described by a boundary CFT for any τ ≫ Λ−1. Below, we
extract key results for the three scaling regimes identified in
Fig. 1(c).
Adiabatic limit—For long ramps τ ≫ T−1, Eq. (6) yields

hWdissiτ→∞ ¼ 1

2
TA2τ−1Ψ̃ðω ¼ 0Þ: ð8Þ

Since the relaxation function does not depend on τ, in the
adiabatic limit the dissipated work decays as 1=τ for any Δ.
Furthermore, the scaling form of Ψ0ðtÞ implies specific
temperature dependences. We find hWdissi ∼ T2Δ−2=τ as
well as κ2W ∼ T2Δ−1=τ and κ3W ∼ T2Δ−1=τ2.
Sudden limit—The field theory results do not strictly

apply for τ ≪ Λ−1, and the cutoff Λ≡TK in CMCK models
is finite. To access the sudden limit, we instead take τ → 0
in Eq. (6), from which it follows that

FIG. 3. Universal work statistics phase diagrams in the
ðT=TK; B=TKÞ plane for the sudden-quench limit, comparing
the C1CK model (noncritical, left panels) with the C2CK model
(critical, right panels). The expected dissipated work hWdissi in
the top row panels shows divergent behavior on approaching the
QCP for B ≪ TK and T ≪ TK in the C2CKmodel (but saturation
for C1CK) consistent with interpretation as a susceptibility.
Middle row panels for ∂ThW3

dissi show the appearance of the
critical scale T� in the C2CK model, reflected also in the
thermodynamic entropy ΔS shown for reference in the bottom
row panels (regimes labeled by their RG fixed points). Note that
hW3

dissi and ΔS are connected by a Maxwell relation. Results
obtained by NRG for J ¼ 0.08D.
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hWdissiτ→0 ¼
1

2
TA2Ψ0ðt ¼ 0Þ≡ −

A2

2

dhN̂Si
dλ

����
λ¼0

; ð9Þ

where we have used the fact that the zero-time relaxation
function is related to a susceptibility [46]. This result
also follows from Eq. (3) by writing Wdiss ¼ W − ΔF
and expanding ΔF to second order in λ, noting that
dF=dλ ¼ hN̂Si. Similarly, for the third cumulant we
find [46]

κ3W ¼ A2

Z
dω
2π

ω2

2β
Ψ̃0ðωÞ ¼ δQ3≡ −

A2

2
hĤSEi0: ð10Þ

NRG results for C1CK and C2CK in the sudden limit,
using N̂S≡Ŝzd, are presented in Fig. 3. Top panels show the
diverging dissipated work in the critical C2CK model for
T; B ≪ TK , which follows from the log-diverging static
magnetic susceptibility dhSzdi=dB near the QCP. By con-
trast, no divergence is seen in C1CK which has a saturating
magnetic susceptibility and no QCP.
Middle panels show ∂ThW3

dissi obtained from κ3W in
Eq. (10), which shows very clearly the vanishing T� scale
in the vicinity of the QCP in the C2CK model. The C1CK
model does not support this critical region and is a Fermi
liquid (FL) for all T ≪ maxðTK; BÞ. The structure of the
phase diagram for ∂ThW3

dissi reflects that of the thermody-
namic entropy change ΔS upon completely polarizing the
impurity spin, as shown in the lower panels. This relation
can be understood from Eq. (10) by applying the Maxwell
relation ∂ThĤSEi ¼ −J∂JS, which implies that a crossover
in the entropy is accompanied by a peak in j∂ThW3

dissij; see
End Matter for details.
Kibble-Zurek regime—The most interesting physics

arises in the KZ regime T−1
K ≪ τ ≪ T−1 of the critical

CMCK models. This is precisely where the CFT scaling
results apply. As shown in End Matter, analysis of Eqs. (6)
and (7) leads to the following KZ scaling predictions
(which hold in LR for finite-time driving across any
boundary QCP). For the dissipated work, we find

ðΛ=TÞ2Δ−1
Λ−1A2

hWdissi¼
�− lnðπτTÞ ∶Δ¼ 1=2;

c1−c2ðπτTÞ1−2Δ ∶Δ< 1=2;
ð11Þ

where c1 and c2 are positive constants. For C2CK and
C3CK, this behavior is confirmed in Figs. 2(c) and 2(d).
The full crossover curves for τ ≫ τ0 can also be computed
from Eq. (7). Exact results for all τT can alternatively be
obtained for the special case of C2CK using the Emery-
Kivelson method [55] and are found to agree with the more
general field theory predictions for Δ ¼ 1=2 when τ ≫ τ0;
see End Matter.
Outlook—The nontrivial properties of the QCPs dis-

cussed here, which support boundary-localized Majorana
fermions and Fibonacci anyons [31,55–57], are shown to

have unique work distribution functions. While charge-
Kondo circuits realize these multichannel Kondo critical
points [29–32], or, alternatively, spin-Kondo QCPs in
semiconductor QDs [26], experimental challenges remain
for extracting the WDF in the quantum regime [58].
Our results have implications for Landauer information

erasure in quantum dot devices, extending the role of
quantum coherence [16,17] to the regime of strongly non-
Markovian dynamics and many-body physics. We also note
a possible connection between quantum work statistics and
the quantum Fisher information due to a ramped LR
perturbation [59], since both quantities are controlled by
the same relaxation function.
Notice that LR is valid in a limited validity regime;

particularly, in our models we require A ≪ χ−1, with χ
being the static charge susceptibility. While the latter
diverges at T ¼ 0, a finite validity regime exists at finite
temperature. The work statistics beyond LR remains a
largely open problem for many-body quantum systems.

Note added—Recently, we became aware of a related
work, Ref. [60].
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End Matter

Relaxation function as a dynamical susceptibility—
Equation (5) is derived in Supplemental Material [46]. In
general, it contains a delta-function contribution with the
temperature-dependent coefficient cðTÞ. It is given by

cðTÞ ¼ −Re½χðω ¼ 0Þ� − dhNSi
dλ

����
λ¼0

: ðA1Þ

For open quantum systems with an environment that
has a continuous gapless spectrum, LR theory provides a
connection between the dynamical susceptibility χðωÞ≡
i
R
∞
0 dte−iωtTrfρ0½N̂SðtÞ; N̂S�g and the static susceptibility

ðdhNSi0=dλÞ at a given temperature T. Specifically,
Re½χðω ¼ 0Þ� ¼ −ðdhNSi0=dλÞ and, therefore, cðTÞ ¼ 0.
Thus, Eq. (6) is exact for such systems in LR. For finite
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closed systems or for systems coupled to an environment
with a discrete spectrum, the Kubo formula for the static
susceptibility no longer applies, and cðTÞ is generically
nonzero. In this case, the first two cumulants (only) in
Eq. (6) pick up a correction [46]. We interpret this in terms
of a heating of the system. This correction will typically
vanish in the thermodynamic limit when the total heat
capacity of the environment diverges.

Derivation of Eq. (11)—The integral in Eq. (7) can be
performed explicitly for any Δ to obtain

Ψ0ðtÞ ¼
π2Δ−1T2Δ−2

Λ2Δ e−iπΔ sin ðπΔÞB
�
−csch2πtT;Δ;

1

2

�

ðB1Þ
where B is the incomplete beta function. For Δ ¼ 1

2
,

Ψ0ðtÞ ¼ 2ðΛTÞ−1arccothðcosh πtTÞ: ðB2Þ

The short-time (πtT ≪ 1) behavior of Ψ0ðtÞ is directly
related to the KZ scaling of the work statistics.
Expanding Eq. (B1) as a series in t, we find

Λ2ðΛ=TÞ2Δ−2Ψ0ðtÞ

¼
�−2 lnðπtTÞþOð1Þ ∶Δ¼ 1=2;

c̃1− c̃2ðπtTÞ1−2ΔþOðtTÞ3−2Δ ∶Δ< 1=2;
ðB3Þ

where both c̃1≡ sin ðπΔÞπ2Δ−3=2Γð1
2
− ΔÞΓðΔÞ and

c̃2≡2 sin ðπΔÞπ2Δ−1ð1 − 2ΔÞ−1 are positive constants that
depend on Δ. Therefore, as t → 0, Ψ0ðtÞ shows a
logarithmic divergence for Δ ¼ 1

2
, but Ψ0ðtÞ saturates to

a finite value in a power-law fashion for Δ < 1
2
.

For the dissipated work, Eq. (6) can be rewritten as
hWdissi ¼ TA2

R
1
0 duð1 − uÞΨ0ðτuÞ. In the KZ regime

τT ≪ 1, and for 0 < u < 1, Ψ0ðτuÞ can be approximated
by Eq. (B3). Substituting it into the integral yields Eq. (11)
with c1 ¼ c̃1=2 and c2 ¼ c̃2=½2þ 3ð1 − 2ΔÞ þ ð1 − 2ΔÞ2�.
Similarly, κ3W can be expressed as κ3W ¼ TA2τ−2½Ψ0ð0Þ −

Ψ0ðτÞ� from Eq. (6). Combining this with Eq. (B3) yields in
the KZ regime

ðΛ=TÞ2Δþ1

ΛA2
κ3W ¼

�
2ðτTÞ−2 ln ðτ=τ0Þ ∶Δ ¼ 1=2;

c�2ðπτTÞ−1−2Δ ∶Δ < 1=2;
ðB4Þ

where c�2 ¼ c̃2π2 and τ0 ∼ T−1
K is a UV cutoff, which is

introduced because Ψ0ð0Þ diverges for Δ ¼ 1=2.

Dissipated work in the sudden limit as a suscepti-
bility—Equation (9) makes clear that the dissipated work
as τ → 0 is related to the charge susceptibility of the
system (or the static spin susceptibility in the Kondo
language). This is vividly illustrated in Fig. 4, where we
show hWdissi in the sudden limit upon reducing the
temperature. For noncritical (Fermi-liquid) systems such

as RLM and C1CK, the dissipated work saturates at low
T, whereas it diverges for the critical (non-Fermi-liquid)
C2CK and C3CK models. This is a characteristic hall-
mark of quenching a critical system. For C2CK hWdissi∼
lnðTK=TÞ, whereas for C3CK hWdissi∼ðTK=TÞ1=5.
Relation between ∂ThW3

dissi and thermodynamic
entropy—Figure 3 shows a remarkable similarity in the
structure of the CMCK phase diagrams for ∂ThW3

dissi≡
∂Tκ

3
W in the sudden limit and the impurity contribution

to the total thermodynamic entropy, ΔS. This connection
can be made precise by considering a local Maxwell
relation. Since the entropy in the ðB; TÞ plane gives
characteristic information on the RG fixed points and
crossover energy scales, we see that the quantum work
statistics (starting at κ3W , where coherence effects first
enter) inherit these useful diagnostic properties.
First, let us write ĤSE ¼ JÔSE , where ÔSE ¼ Ŝþd ŝ

−
c þ

Ŝ−d ŝ
þ
c for CMCK models. With FðT; JÞ the J- and

T-dependent free energy, consider a quasistatic process
J∶J → 0, keeping ðB; TÞ fixed. The entropy change for this
process—that is, the difference in total entropy of two
equilibrium systems with couplings J and J ¼ 0—is
related to ΔS plotted in the lower panel in Fig. 3.
The entropy can be obtained from the free energy as

S ¼ −∂TFðT; JÞ. On the other hand, ∂JFðT; JÞ ¼ hÔSEi
such that from Eq. (10) we find κ3W ¼ − 1

2
JA2

∂JFðT; JÞ.
Since ð∂2F=∂J∂TÞ ¼ ð∂2F=∂T∂JÞ, we have the Maxwell
relation ∂JS ¼ −∂ThÔSEi. Therefore, ∂Tκ3W is related to
changes in entropy. Crossovers in ΔS (e.g., between fixed
points) correspond to minima or maxima in ∂Tκ

3
W , as

observed in the middle panel in Fig. 3. This relation holds
in the sudden limit at LR.

Behavior of ∂ThW3
dissi away from the sudden limit—

For the C2CK case, Eq. (B2) can be used to find the

FIG. 4. In the sudden-quench limit τ → 0, the dissipated work
hWdissi in LR is proportional to a susceptibility; see Eq. (9). At
low temperatures, hWdissi thus saturates to a finite constant for
RLM and C1CK, but it diverges for critical systems like C2CK
and C3CK in a way that is characteristic of the QCP. Here, Λ ¼ Γ
for RLM and TK for CMCK. We set B ¼ 0.
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full field-theory prediction for ∂ThW3
dissi≡∂Tκ3W for

τT ≫ 1:

1

A2

dκ3W
dT

¼ T
Λ

�
2

ðτTÞ2
�

πτT
sinhðπτTÞ − 1

��
: ðE1Þ

As shown in Fig. 5 by the dashed and dotted lines,
∂Tκ

3
W displays a peak versus temperature. While the

middle panel in Fig. 3 shows this peak in the sudden
limit τ → 0 at T ¼ TK (horizontal black stripe), Eq. (E1)
indicates that this peak evolves to finite τ by shifting to
T ¼ τ−1 with a height that scales as τ−1. As we
approach the adiabatic limit, this energy scales 1=τ → 0,
which shows that τ acts like an inverse energy scale to
the QCP. Note that the sudden limit is not captured
by Eq. (E1).

Emery-Kivelson solution for C2CK—The low-energy
(Fermi-liquid) crossover of the C2CK model can be
obtained exactly using the bosonization methods of
Emery and Kivelson (EK); see Refs. [29,55]. The
effective model is a noninteracting Majorana resonant
level model:

Ĥ¼ ϵdd†dþ ivF

Z
∞

−∞
dxψ†

∂xψþ J̃½ψð0Þþψ†ð0Þ�ðd†−dÞ;

ðF1Þ

where d is a spinless fermion operator for the impurity
and ψðxÞ is a field operator for 1D conduction electrons
at position x (with x ¼ 0 the impurity position). Here,
vF is the Fermi velocity and J̃ ¼ J=

ffiffiffiffiffiffiffiffi
2πa

p
with a the

lattice constant. The model is exactly solvable, and, in
particular, for ϵd ¼ 0 we have [55]

Im χðωÞ ¼ 1

2
tanh

�
ω

2T

�
Γ

ω2 þ Γ2
; ðF2Þ

with Γ≡J2=ðπvFaÞ the level width. In the original
Kondo model, TK plays the role of Γ. Moments of the
dissipated work then follow from Eq. (6).
These exact analytic results are plotted as the solid lines

in Fig. 5. Note, in particular, that the EK solution for C2CK
captures the full crossover of the work statistics in τT,
including the sudden limit. The peak in ∂ThW3

dissi (left
panel, inset) scales as τ−1 for τΛ ≫ 1 but correctly saturates
for τΛ ≲ 1, with Λ ¼ Γ in the EK model. NRG results for
the bare C2CK model show the same saturation behavior
(except with Λ ¼ TK as expected). The CFT results (Fig. 5,
dashed lines) agree perfectly with the EK prediction in
the scaling regime T ≪ Λ; however, the crossover to the
sudden limit is not recovered (dotted lines) due to the finite
CFT cutoff Λ.

NRG calculations—Our NRG [35] results for the
M-channel charge-Kondo models were obtained utili-
zing the interleaved Wilson chain technique [37], with
dynamical quantities obtained using the full density
matrix approach [36]. Moments of the dissipated work
distribution shown in Fig. 2 involved calculation of
the finite-temperature, real-frequency retarded impurity
dynamical spin susceptibility, χðω; TÞ ¼ ⟪Ŝzd; Ŝ

z
d⟫ω;T .

For Fig. 3 in the sudden-quench limit, the static
susceptibility dhŜzdi=dB and dhĤSEi=dT were calculated
using the differentiable-NRG methodology [38].
Throughout, we used an NRG discretization parameter
Λ ¼ 2.5, combining the results of Nz ¼ 2 calculations,
and kept Nk ¼ 5000, 12000, and 40000 states for the
M ¼ 1, 2, and 3 channel models, respectively. We used
J ¼ 0.08D in terms of the conduction electron band-
width D, yielding a Kondo temperature TK¼10−10D≡Λ.
Results presented are, therefore, all in the universal
regime.

FIG. 5. Evolution of the third moment of the dissipated work
hW3

dissi for the C2CK model, plotted as ∂ThW3
dissi vs T=Λ (left)

and Λ=T × ∂ThW3
dissi vs τT (right), where Λ ¼ TK is the cutoff

here. The CFT prediction [dashed and dotted lines, Eq. (E1)]
agrees with the full EK solution (solid lines) in the scaling regime
τ ≫ 1=TK . The inset shows the temperature Tp of the peak in
∂ThW3

dissi, which saturates at Tp ∼ TK for τ ≪ 1=TK. Plotted for
τΛ ¼ 10n with n ¼ 4; 2; 0;−2;−4 for black, blue, red, magenta,
and green lines in the left panel; and T=Λ ¼ 10m with
m ¼ −3;−1.5;−1;−0.5, 0 for black, green, blue, magenta,
and orange lines in the right panel.
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S-I. DERIVATION OF EQ. 3

In the sudden-quench limit, Uτ → I, the generating function h(u), given in Eq. 2 in the main text, reduces to

h(u) = Tr[e−u(Ĥ0+AN̂S)e−(β−u)Ĥ0 ]/Z . (S-1)

Here Z is the partition function of Ĥ0 and β = 1/T (with kB , ℏ ≡ 1). Using the Zassenhaus formula, the first term

inside the trace e−u(Ĥ0+AN̂S) can be expanded as an infinite product

e−u(Ĥ0+AN̂S) = e−uĤ0e−uAN̂Se−
u2

2 [Ĥ0,AN̂S ]e−
u3

6 (2[AN̂S ,[Ĥ0,AN̂S ]]+[Ĥ0,[Ĥ0,AN̂S ]]) · · · , (S-2)

where · · · represents exponents of higher order in u. Substituting Eq. S-2 into Eq. S-1, we have

h(u) = ⟨e−uAN̂Se−
u2

2 [Ĥ0,AN̂S ]e−
u3

6 (2[AN̂S ,[Ĥ0,AN̂S ]]+[Ĥ0,[Ĥ0,AN̂S ]]) · · · ⟩0, (S-3)

where ⟨·⟩0 = Tr{ρ0·}. The nth moment of the WDF is given by ⟨Wn⟩ = (−1)n dn

dunh(u)|u=0, and thus can be calculated

from Eq. S-3 by keeping the first n terms. The classical contribution comes from the first exponent: Expanding e−uAN̂S

as a series of powers in u and substituting it into ⟨Wn⟩ = (−1)n dn

dunh(u)|u=0 results in the term given by An⟨N̂n
S ⟩0

in Eq. 3. All other contributions originating from higher exponents are defined as δQn, and, in particular, we find

δQ1 = δQ2 = 0, δQ3 = A2

2 ⟨[N̂S , [Ĥ0, N̂S ]]⟩0.

S-II. DERIVATION OF EQ. 5

Our derivation is made up of 2 steps. First, we show that 1
β

dΨ0(t)
dt = −iTr

[
ρ[N̂S(t), N̂S(0)]

]
, following Ref. 1.

Recall the definition of Ψ0(t),

Ψ0(t) = β

∫ β

0

ds ⟨N̂S(−is)N̂S(t)⟩0 − β2⟨N̂S⟩20 , (S-4)

where N̂S(−is) = esĤ0N̂Se
−sĤ0 , and N̂S(t) = eiĤ0tN̂Se

−iĤ0t. Using the identity∫ β

0

e−λĤ0 [Ĥ0, Â]e
λĤ0dλ = −e−βĤ0 [Â, eβĤ0 ], (S-5)

which holds for any operator Â, we have

1

β

dΨ0(t)

dt
= i

∫ β

0

ds⟨N̂S(−is)[Ĥ0, N̂S(t)]⟩

= i

∫ β

0

dsTr

[
e−βĤ0

Z
esĤ0N̂Se

−sĤ0 [Ĥ0, N̂S(t)]

]

= i

∫ β

0

dsTr

[
e−βĤ0

Z
N̂Se

−sĤ0 [Ĥ0, N̂S(t)]e
sĤ0

]

= −iTr

[
e−βĤ0

Z
N̂Se

−βĤ0 [N̂S(t), e
βĤ0 ]

]
= −iTr

[
ρ0[N̂S(t), N̂S ]

]
. (S-6)
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Second, we express the Fourier transform of f(t) = −iTr
[
ρ[N̂S(t), N̂S(0)]

]
in terms of the Fourier transform of

χ(t) = iθ(t)Tr
[
ρ0[N̂S(t), N̂S ]

]
. By definition, χ(t) = −θ(t)f(t), thus we have

χ(ω) = −
∫ ∞

0

dtf(t)eiωt−ηt

= −
∫ ∞

−∞

dΩ

2π
f(Ω)

∫ ∞

0

dtei(ω−Ω)t−ηt

= −
∫ ∞

−∞

dΩ

2π
f(Ω)

−i
Ω− ω − iη

= P
∫
dΩ

2π
if(Ω)

1

Ω− ω
− 1

2
f(ω).

Now, since f(t) = −f(−t) it follows that f(ω) is purely imaginary, so that the first term in the last line is purely real.
We can eliminate it by taking the imaginary part of the equation, which yields f(ω) = −2iImχ(ω). Finally, noticing

that 1
β

dΨ0(t)
dt = f(t), we conclude

Ψ̃0(ω) =
2

ωT
Imχ(ω) + 2π

c(T )

T
δ(ω). (S-7)

The second term proportional to δ(ω) could in principle appear if the relaxation function Ψ0(t) contains a finite
constant term (that is, Ψ0(t) → c(T )/T as |t| → ∞).

A. c(T ) from Lehmann representation

Below we give an expression for c(T ) using a Lehmann representation. We thank Mark Mitchison for pointing this
out to us. First, we notice that

⟨N̂S(−is)N̂S(t)⟩0 =
∑
m,n

e−βEm

Z
e−(s−it)(En−Em)|⟨m|N̂S |n⟩|2. (S-8)

To integrate over s, we separate the sum into terms with Em = En and terms with Em ̸= En, and we get∫ β

0

ds⟨N̂S(−is)N̂S(t)⟩0 =
∑

Em ̸=En

1

Em − En

e−βEn − e−βEm

Z
eit(En−Em)|⟨m|N̂S |n⟩|2 + β

∑
Em=En

e−βEm

Z
|⟨m|N̂S |n⟩|2.

(S-9)

The terms with Em = En, together with the term β2⟨N̂S⟩20, give the c(T ) term in Eq. S-7 upon Fourier transformation.
The Lehmann representation of the relaxation function shows that

c(T ) = β

( ∑
Em=En

e−βEm

Z
|⟨m|N̂S |n⟩|2 − ⟨N̂S⟩20

)
. (S-10)

S-III. PHYSICAL CONDITION FOR c(T ) = 0

We can obtain a relation of c(T ) from Eq. S-7 by integration over ω, which gives the relaxation function at t = 0.
As given in Eq. 9 in the main text, and derived in Sec. S-V, this gives the static susceptibility,

−d⟨N̂S⟩
dλ

= T

∫
dω

2π
Ψ0(ω) =

1

π

∫
dω

Imχ(ω)

ω
+ c(T ), (S-11)

thus we have

c(T ) = −d⟨N̂S⟩
dλ

− 1

π

∫
dω

Imχ(ω)

ω
, (S-12)
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where the static susceptibility d⟨N̂S⟩
dλ is evaluated at λ = 0. Since the retarded correlation function χ(ω) is analytic in

the upper-half complex plane, the Kramers-Kronig relation yields,

Reχ(ω = 0) =
1

π

∫
dω

Imχ(ω)

ω
. (S-13)

This gives

c(T ) = −d⟨N̂S⟩
dλ

− Reχ(ω = 0) (S-14)

At a given temperature T , typically one can deduce that Reχ(ω = 0) = −d⟨N̂S⟩0
dλ according to linear response theory,

so that c(T ) = 0. This indeed holds in all the cases studied in our work, where we have open quantum systems
and an environment with a continuous, gapless spectrum. The condition for c(T ) = 0 is therefore that the static

susceptibility d⟨N̂S⟩
dλ can be obtained from the Kubo formula in the usual way. This can break down for closed finite

systems or open systems with discrete environments.

A. Explicit demonstration that c(T ) = 0 in RLM and Majorana RLM

For the RLM and Majorana RLM, we have analytic expressions for both χ(T ) = d⟨N̂S⟩
dλ and Imχ(ω), so c(T ) can

be extracted explicitly. We confirm that c(T ) = 0 in both cases.
For Majorana RLM, we have

Imχ(ω) =
1

2
tanh

( ω
2T

) Γ

ω2 + Γ2
, (S-15)

at λ = 0 and

⟨N̂S⟩0 =
1

2
− Im

{
λ

π∆

[
ψ(

1

2
+

Γ + i∆

4πT
)− ψ(

1

2
+

Γ− i∆

4πT
)

]}
, (S-16)

where ∆ =
√
4λ2 − Γ2. Substituting into Eq. S-14 we indeed get c(T ) = 0.

Similarly, for RLM, we have

Imχ(ω) = Im

[
2

πΓ

1
ω2

Γ2 + 2iωΓ
×
(
ψ(

1

2
+

Γ

2πT
)− ψ(

1

2
+

Γ

2πT
− i

ω

2πT
)

)]
, (S-17)

and

⟨N̂S⟩0 =
1

2
+

1

2π
Im

[
ψ(

1

2
+

Γ− iλ

2πT
)− ψ(

1

2
+

Γ + iλ

2πT
)

]
. (S-18)

Again we find c(T ) = 0 via Eq. S-14.
Let us point out that we have checked that c(T ) = 0 also for the C2CK and C3CK models using our NRG

calculations.

B. Example of a scenario where c(T ) ̸= 0

In situations where the Kubo formula for the static susceptibility d⟨N̂S⟩
dλ in terms of the dynamical susceptibility

χ(ω) would not apply, one might expect that c(T ) could be finite. To illustrate this scenario, consider the following

simple Hamiltonian Ĥ0 for an isolated two-level system, and the operator N̂S ,

Ĥ0 = w

(
x 1
1 0

)
, N̂S =

(
1 0
0 0

)
. (S-19)

The retarded correlator χ(t) = iθ(t)Tr
{
ρ0

[
N̂S(t), N̂S(0)

]}
is in this case given by,

χ(t) =
2 tanh

(
βw
2

√
4 + x2

)
4 + x2

sin
(
wt
√

4 + x2
)
θ(t), (S-20)
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from which we find,

Reχ(ω = 0) =
2 tanh

(
βw
2

√
4 + x2

)
w(4 + x2)3/2

. (S-21)

On the other hand, a direct calculation of the susceptibility gives

d⟨N̂S⟩
dλ

= − 1

w

βwx2/(4 + x2) + 4 sinh
(
βw

√
4 + x2

)
/(4 + x2)3/2

2
(
1 + cosh

(
βw

√
4 + x2

)) . (S-22)

Substituting Eq. (S-21) and Eq. (S-22) into Eq. (S-12), we get

c(T ) = β
x2

2(4 + x2)
(
1 + cosh

(
βw

√
4 + x2

)) , (S-23)

which is indeed finite for any finite x and T . The Lehmann representation of the relaxation function, Eq. S-10 can be
checked to match Eq. S-23 exactly.

C. Discussion

The only possibility for the non-cancellation of the two terms contributing to Eq. S-12 is that the time evolution of
the unperturbed state under the Hamiltonian H(t) = H0+δλe

δtN̂S , which features in the linear response formulation,

does not coincide with the thermal state of the final Hamiltonian H(0) = H0 + δλN̂S at the same initial temperature
T . In fact, this is exactly what happens in the two level system considered above. The work done by the time
dependent Hamiltonian changes the internal energy of the system, and this is accounted for by a temperature change
of order δλ.
The general condition for the latter phenomena not to occur, is that the system under consideration is coupled to a

thermal bath. In the examples studied in our work, we consider extended systems with a continuous gapless density
of states. Hence the leads act as a thermal bath, and this infinite set of modes absorbs the energy change of order δλ
without causing a change in temperature of the bath.

Hence, the general condition for which c(T ) ̸= 0 is that the total specific heat capacity is finite. The metallic
leads featuring in generic quantum impurity systems have a finite specific heat capacity per unit volume, meaning an
infinite total specific heat capacity. Thus c(T ) = 0 in these systems.

S-IV. DERIVATION OF EQ. 6

In LR, the cumulant generating function K(η) ≡ ln⟨e−ηβWdiss⟩ admits an explicit expression2

K(η) = −
∫ τ

0

dtλ̇(t)

∫ τ

0

dt′λ̇(t′)

∫
dω

2π
gη(ω)Ψ̃0(ω)e

iω(t−t′), (S-24)

with gη(ω) =
sinh(

βω(1−η)
2 ) sin( βωη

2 )

βω sinh( βω
2 )

. All the cumulants of the WDF are given by2

2π2βκnW =


∫
dω ωn−1 Ψ̃0(ω)

∣∣∣∫ τ

0
dtλ̇(t)eiωt

∣∣∣2 : n odd∫
dω ωn−1 coth( ω

2T ) Ψ̃0(ω)
∣∣∣∫ τ

0
dtλ̇(t)eiωt

∣∣∣2 : n even
(S-25)

For linear ramp, λ(t) = At/τ , thus we have
∣∣∣∫ τ

0
dtλ̇(t)eiωt

∣∣∣2 = A2sinc2(ωτ/2). Substituting it into Eq. S-25, and

noticing Eq. S-7 and Eq. S-14, we get

2πκnW
A2

=


∫
dω ωn−1 sinc2(ωτ

2 )
(

Imχ(ω)
ω − πδ(ω)

[d⟨N̂S⟩
dλ +Reχ(ω)

])
: n odd∫

dω ωn−1 coth( ω
2T ) sinc

2(ωτ
2 )
(

Imχ(ω)
ω − πδ(ω)

[d⟨N̂S⟩
dλ +Reχ(ω)

])
: n even

(S-26)
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We note that the delta-function piece inside the integral contributes only for the n = 1 and n = 2 cumulants. For all
n ≥ 3 the cumulants are given exactly by Eq. 6 of the main text, even when c(T ) is finite. For n = 1 and n = 2 we
pick up corrections, leading to:

2πκnW
A2

=

−π
(

d⟨N̂S⟩
dλ +Reχ(ω = 0)

)
+
∫
dω ωn−2 sinc2(ωτ

2 ) Imχ(ω) : n = 1

−2πT
(

d⟨N̂S⟩
dλ +Reχ(ω = 0)

)
+
∫
dω ωn−2 coth( ω

2T ) sinc
2(ωτ

2 ) Imχ(ω) : n = 2
(S-27)

Finally, as we explained in Sec.S-III, we note that c(T ) = −d⟨N̂S⟩
dλ |λ=0−Reχ(ω = 0) = 0 for the systems we consider.

In this case, we get Eq. 6 of the main text for all n. Note also that in LR, up to order A2, the cumulants and the
moments of the dissipated work are equal.

S-V. DERIVATION OF EQS. 9 AND 10

By definition, we have

⟨N̂S⟩λ0+δλ =
Tr
[
N̂Se

−β(Ĥ0+δλN̂S)
]

Tre−β(Ĥ0+δλN̂S)
. (S-28)

Using the identity

eÂ+αB̂ = eÂ + α

∫ 1

0

dyeyÂB̂e(1−y)Â +O(α2), (S-29)

we could expand both the numerator and denominator of Eq. S-28 to linear- order in δλ, which gives

Tr
[
N̂Se

−β(Ĥ0+δλN̂S)
]
= Tr

[
N̂Se

−βĤ0

]
− βδλ

∫ 1

0

dyTr
[
N̂Se

−βyĤ0N̂Se
−β(1−y)Ĥ0

]
,

Tre−β(Ĥ0+δλN̂S) = Tre−βĤ0 − βδλTr
[
N̂Se

−βĤ0

]
.

Thus, to linear-order in δλ, we have

⟨N̂S⟩λ0+δλ = ⟨N̂S⟩0 + βδλ⟨N̂S⟩20 − δλ

∫ β

0

ds⟨N̂S(−is)N̂S(0)⟩0, (S-30)

and Eq. 9 directly follows.

To derive Eq. 10, we start from Eq. S-6. Considering 1
β

d2Ψ0(t)
dt2 |t=0, we find

1

β

d2Ψ0(t)

dt2

∣∣∣∣
t=0

= −i d
dt

Tr
[
ρ0[N̂S(t), N̂S ]

]∣∣∣∣
t=0

= −i d
dt

(
Tr
[
ρ0e

iĤ0tN̂Se
−iĤ0tN̂S

]
− Tr

[
ρ0N̂Se

iĤ0tN̂Se
−iĤ0t

])∣∣∣∣
t=0

= 2
(
Tr
[
ρ0Ĥ0N̂

2
S

]
− Tr

[
ρ0N̂SĤ0N̂S

])
= −Tr

[
ρ0

[
N̂S , [Ĥ0, N̂S ]

]]
. (S-31)

Notice that d2Ψ0(t)
dt2 |t=0 = −

∫
dωω2Ψ̃0(ω), thus

1

β

∫
dωω2Ψ̃0(ω) = Tr

[
ρ
[
N̂S , [Ĥ0, N̂S ]

]]
. (S-32)

Finally, notice that in our setup, [Ĥ0, N̂S ] = [ĤSE , N̂S ]. In addition, the dot-lead hybridization term ĤSE can be

decomposed into a tunneling-in part and a tunneling-out part, ĤSE = Ĥ
(+)
SE +Ĥ

(−)
SE , where we have [N̂S , Ĥ

(+)
SE ] = qĤ

(+)
SE

and [N̂S , Ĥ
(−)
SE ] = −qĤ(−)

SE for the tunneling process that involves q charges. For both the resonant level model and
the charge Kondo device, q = 1, thus we have[
N̂S , [Ĥ0, N̂S ]

]
= −

[
N̂S , [N̂S , Ĥ0]

]
= −

[
N̂S , [N̂S , Ĥ

(+)
SE + Ĥ

(−)
SE ]

]
= −

[
N̂S , Ĥ

(+)
SE − Ĥ

(−)
SE

]
= −

(
Ĥ

(+)
SE + Ĥ

(−)
SE

)
= −ĤSE .

(S-33)
Combining Eq. S-32 with Eq. S-33, we get Eq. 10.
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S-VI. RESONANT LEVEL MODEL

A noninteracting QD is described by the spinless RLM. The ‘system’ is the QD level itself, while the ‘environment’
is the bath of conduction electrons, see Fig. S-1(a). They are coupled by the dot-lead hybridization term ĤSE which
allows the dot charge to fluctuate, even though the total particle number is fixed. Fig. S-1(b) illustrates the QD charge
dynamics induced by driving the local dot potential. Here we treat the environment explicitly, providing exact results
beyond the Markovian approximation used in the master equation, which neglects system-environment entanglement.

Explicitly, we have

⟨N̂S⟩0 =
1

2
+

1

2π
Im

(
ψ(

1

2
+

Γ− iϵd
2πT

)− ψ(
1

2
+

Γ + iϵd
2πT

)

)
, (S-34a)

⟨ĤSE⟩0 = 2Γ

∫ Λ

−Λ

dω

π
f(ω)

ω − ϵd
(ω − ϵd)2 + Γ2

, (S-34b)

χ(ω) =− 1

πΓ

∫ ∞

−∞
dxf(Γx+ ϵd)

2x

(x2 + 1) (x2 − (ω/Γ + i)2)
, (S-34c)

where ψ(x) is the digamma function. Eq. S-34c was previously derived in Ref. 3, see Eq.(1.55) thereof. At the
particle-hole symmetric point ϵd = 0, the integral in Eq.S-34c can be done and we find a closed-form expression for
Imχ(ω),

Imχ(ω) = Im

[
2

πΓ

1
ω2

Γ2 + 2iωΓ
×
(
ψ(

1

2
+

Γ

2πT
)− ψ(

1

2
+

Γ

2πT
− i

ω

2πT
)

)]
. (S-35)

FIG. S-1. (a) Generic scenario in which a globally-conserved charge N̂ = N̂S+N̂E is shared by the system and the environment.

(b) In a QD, where N̂S ≡ n̂ corresponds to the dot occupation, driving the dot potential ϵd induces nontrivial dynamics that
can be characterized by quantum work statistics.
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