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Non-Hermitian (NH) Hamiltonians describe open quantum systems, nonequilibrium dynamics, and
dissipative processes. Although a rich range of single-particle NH physics has been uncovered, many-body
phenomena in strongly correlated NH systems have been far less well studied. The Kondo effect, an
important paradigm for strong correlation physics, has recently been considered in the NH setting. Here,
we develop an NH generalization of the numerical renormalization group and use it to solve the NH Kondo
model. Our nonperturbative solution applies beyond weak coupling, and we uncover a nontrivial phase
diagram. The method is showcased by application to the NH pseudogap Kondo model, which we show
supports a completely novel phase with a genuine NH stable fixed point and complex eigenspectrum. Our
NH numerical renormalization group code, which can be used in regimes and for models inaccessible to,
e.g., perturbative scaling and Bethe ansatz, is provided open source.

DOI: 10.1103/19td-1k9s

The past two decades have seen immense interest in open
quantum systems, with non-Hermitian (NH) Hamiltonians
describing the effective dynamics of dissipative systems
playing a key role [1–5]. NH Hamiltonians present certain
unique challenges, such as dealing with complex eigen-
values, nonorthonormal eigenvectors [6,7], and exceptional
points [8–18]—singularities in parameter space at which
eigenvalues and eigenstates coalesce. NH systems with
PT symmetry [19–21] are somewhat simpler, having real
eigenvalues, but many systems of interest do not fall into
this class. Much attention has, to date, focused on single-
particle NH systems [3,4], while many-body counterparts
remain far less well explored. Although recent work has
begun to address strongly correlated NH physics, non-
perturbative numerical methods beyond exact diagonaliza-
tion remain limited [22,23].
The Kondo model [24] is a classic paradigm for strong-

correlation physics in the standard Hermitian scenario,
so the solution of its NH generalizations is naturally of
importance for understanding NH physics in the many-
body context. Furthermore, as shown in Ref. [25], ultracold
atom systems undergoing inelastic scattering with two-
body losses can be described by an effective NH Kondo
model. These factors have stimulated considerable interest
in a range of NH quantum impurity models [25–41].

The non-Hermitian Kondo model reads

Ĥ ¼ Ĥbath þ JŜi · Ŝ0; ð1Þ

where J ¼ JR − iJI is taken to be complex, Ŝi is a spin-1
2

operator for the impurity, Ĥbath ¼
P

k;σ ϵkc
†
kσckσ describes

a continuum bath of noninteracting conduction electrons
labeled by spin σ ¼ ↑;↓ and momentum k, and Ŝ0 ¼
1
2

P
σ;σ0 c

†
0στσ;σ0c0σ0 is the local conduction electron spin

density at the impurity position (here, c0σ ¼
P

k αkckσ
and τ is the Pauli vector). The bath is characterized by
its density of states at the impurity, ρðωÞ. For a standard
metallic flat band, we take ρðωÞ ¼ ρ0ΘðD − jωjÞ.
Equation (1) does not possess PT symmetry and so
generically has a complex eigenspectrum.
The standard Hermitian Kondo model is recovered for

JI ¼ 0. For antiferromagnetic coupling JR > 0, the impu-
rity spin is dynamically screened by surrounding conduc-
tion electrons via the Kondo effect [24] at low temperatures
T ≪ TK , with TK ∼De−1=ρ0JR the Kondo temperature. The
physics is nonperturbative and non-Markovian: even for
small bare JR, the impurity becomes strongly coupled to the
bath at low T by formation of a many-body Kondo singlet
state inside a large entanglement “cloud” [42–44]. The
Kondo effect can be understood in the renormalization
group (RG) framework [45] as a flow from the unstable
local moment (LM) fixed point, corresponding to a free
spin on the impurity decoupled from the bath, to the stable
strong-coupling (SC) fixed point in which the impurity is
bound up in the Kondo singlet. A full, nonperturbative
solution of the Kondo problem is provided by Wilson’s
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numerical renormalization group (NRG) technique [46,47],
which can also be applied to generalized quantum impurity
problems, and works with arbitrary bath density of states.
The Hermitian Kondo model in the wide flat-band limit can
also be solved exactly by Bethe ansatz [48].
The NH Kondo model was studied in Ref. [25] using a

combination of perturbative scaling and Bethe ansatz,
which provides a rather complete picture of the weak-
coupling physics up to jJj=D≲ 0.25, beyond which the
methods break down. It was shown that sufficiently strong
dissipation (tuned by increasing JI) can produce a quantum
phase transition between the standard Kondo SC phase and
an unscreened LM phase, via a mechanism analogous to the
continuous quantum Zeno effect [49]. A reversion of the
RG flow was observed in the LM phase, which violates
the g theorem for Hermitian systems [50]. The low-energy
fixed points were found to be real, meaning that the metallic
NH Kondo model has an emergent Hermiticity. However,
this scenario has recently been challenged, with the alter-
native Bethe ansatz results of Ref. [28] appearing to show a
different phase diagram, with a new phase intervening
between SC and LM.
In this Letter, we introduce the non-Hermitian numerical

renormalization group (NH-NRG) method, which is fully
nonperturbative, and can be applied to a wide range of
Kondo or Anderson-type impurity models and their var-
iants. With no restriction on coupling strength, we uncover
a nontrivial phase diagram for the NH Kondo model
[Fig. 1(a)], showing that at weak-to-moderate coupling,
the scenario of Ref. [25] pertains. However, for stronger
dissipation (larger values of JI) we find reentrant Kondo
behavior, whereas the LM phase is found to terminate
entirely beyond a critical value of JR. Unlike the Bethe
ansatz and other methods such as conformal field theory

that rely on linear dispersion [48,50], NH-NRG works with
equal ease for any bath density of states. We apply NH-
NRG to an NH pseudogap Kondo model, showing that the
lower-critical dimension of the Hermitian model [51] is
shifted by finite JI , and an entirely new stable fixed point
appears that is fundamentally non-Hermitian.
Non-Hermitian NRG—Here, we generalize the standard

NRG methodology to treat NH quantum impurity prob-
lems. Although the basic algorithm proceeds along similar
lines to Wilson’s original formulation for Hermitian sys-
tems [46,47], incorporating NH physics involves additional
challenges. Below we describe the key points, but full
technical details and validation checks are given in the
End Matter and Supplemental Material [52].
In the standard NRG procedure for the Kondo model, the

first step is to logarithmically discretize the free conduction
electron bath and map it to a 1DWilson chain (WC). This is
done by dividing up the density of states ρðωÞ into intervals
according to the discretization points�DΛ−n, whereΛ > 1
is the NRG discretization parameter and n ¼ 0; 1; 2; 3;….
The continuous electronic density in each interval is
replaced by a single pole at the average position
with the same total weight, yielding ρdiscðωÞ. We then
map Ĥbath → ĤWC ¼ P∞

n¼0

P
σðϵnf†nσfnσ þ tnf

†
nσfnþ1σ þ

tnf
†
nþ1σfnσÞ with the real parameters fϵng and ftng chosen

such that the local density of states at orbital f0σ to
which the impurity couples is precisely ρdiscðωÞ. Because
of the logarithmic discretization [46], the WC parameters
decay asymptotically as ∼DΛ−n=2. We now define a
sequence of Hamiltonians ĤN comprising
the impurity and the first N chain sites, satisfying the
recursion relation ĤN ¼ ĤN−1 þ T̂N , where T̂N ¼P

σðϵNf†NσfNσ þ tN−1f
†
N−1σfNσ þ tN−1f

†
NσfN−1σÞ. The

FIG. 1. Solution of the non-Hermitian Kondo model using NH-NRG. (a) Phase diagram in the ðJR; JIÞ plane, showing the numerically
exact boundary (black line) separating SC (blue) and LM (orange) phases. Red dot-dashed line shows the Bethe ansatz result [25], which
is valid for jJj≲ 0.25 and agrees perfectly with NH-NRG in that regime (see inset). (b),(c) RG flow of the NH-NRG complex
eigenvalues EN with iteration numberN, showing the real and imaginary parts in the top and bottom panels, for representative systems in
the SC and LM phases. (d),(e) Illustration of the reversion of the eigenvalue RG flow in the Argand plane for two representative
eigenvalues of the system in the LM phase (J ¼ 0.1 − 0.5i). The iterationN (colorbar) increases in the direction of the arrows toward the
Hermitian Kondo fixed point value (green point). Shown for different representative states in (d) and (e). NH-NRG calculations
performed for Λ ¼ 3 and Nk ¼ 400.
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sequence is initialized by Ĥ0 ¼ JŜi · Ŝ0 [53] and the full
(discretized) model is obtained as N → ∞. Starting from
the impurity, we build up the chain by successively adding
WC sites using this recursion. At each step N, the
Hamiltonian ĤN is diagonalized, and only the Nk lowest
energy states are retained to construct the Hamiltonian
ĤNþ1 at the next step. In such a way, we focus on
progressively lower energy scales with each iteration.
The higher energy states can be discarded at each step
due to the energy-scale separation down the chain. The RG
character of the problem can be seen directly in the
evolution with N of the many-particle NRG energy levels
of ĤN . This is done by specifying the NRG energies EN
with respect to the ground state energy of that iteration,
and then rescaling by a factor ΛN=2, so that the Nk retained
states at each step always span the same energy range.
Importantly, the NRG energy levels flow between fixed
points (e.g., from LM to SC). The calculation scales
linearly in N, and the stable fixed point is reached after
a finite number of steps. NRG is thus able to capture an
exponentially wide range of energy scales, from the
bandwidth D down to the Kondo temperature TK .
In the NH case, ĤN in general has complex eigenvalues,

and its left and right eigenvectors are distinct. The iterative
diagonalization procedure in NH-NRG proceeds similarly
to the Hermitian case, but the recursion by which ĤNþ1 is
obtained from ĤN must be carefully reformulated to
account for these crucial differences—see End Matter
and [52]. One may construct a biorthonormal basis [6] if
the spectrum is nondegenerate, and this provides sub-
stantial advantages in terms of the efficiency and stability
of the algorithm. Although quantum impurity models
do typically have many eigenvalue degeneracies, the
most significant source of these is from symmetries.
However, these symmetries can then be utilized to
block-diagonalize the Hamiltonian in distinct quantum
number subspaces [54]. In the present setting, labeling
states by the total charge Q and total spin projection Sz is
sufficient to separate all exact degeneracies into different
blocks [56]. It is anyway desirable to exploit symmetries
in this way since it reduces block sizes, and increases
computational efficiency [57]. We identify two other
sources of approximate degeneracy in these systems:
accidental and emergent. In both cases, the use of high-
precision numerics is found to overcome any instabilities
associated with biorthonormalization [52].
Another key aspect of the NRG procedure that must

be adapted is the Fock-space truncation at each step. In
Hermitian NRG, where the eigenvalues EN are real, we
retain only the Nk lowest-lying eigenvalues, but this
becomes ambiguous in the NH context when the eigen-
values are complex. We found that truncating by the lowest
real part of the eigenvalues gives the most accurate and
stable results. We therefore identify the “ground state” as

the one with the lowest real part (consistent with existing
conventions in NH physics).
We have confirmed explicitly that applying NH-NRG

to a noninteracting NH resonant level model using this
truncation scheme perfectly reproduces the results of exact
diagonalization, as shown in the End Matter. This provides
a stringent test of the NH-NRG algorithm, which gives
accurate results in the nonperturbative regime and far from
the Hermitian limit. One can also check convergence upon
taking Λ → 1 [52].
Our NH-NRG code is available open source to facilitate

future studies of NH quantum impurity models; see [58].
Solution of the NH Kondo model—We now apply NH-

NRG to the metallic NH Kondo model (bandwidth D≡ 1
hereafter). The phase diagram for antiferromagnetic JR > 0
obtained by NH-NRG is presented in Fig. 1(a) as a function
of the real and imaginary parts of the complex Kondo
coupling, JR and JI . We find two phases, described by the
SC and LM fixed points of the Hermitian Kondo model,
separated by a quantum phase transition. We identify the
phases from the NH-NRG eigenspectrum at large N after
convergence, which takes a distinct form in SC and LM
phases. In particular, the imaginary part of the eigenvalues
ImðENÞ vanishes in all cases at large N, indicating the
emergent Hermiticity of the fixed point Hamiltonian. Since
the fixed points are Hermitian, we can compute their
thermodynamic properties in the usual way [46]. As
expected, we find an impurity contribution to entropy of
kB lnð2Þ for a free spin in the LM phase, and 0 for the
screened Kondo singlet in the SC phase.
At relatively weak bare coupling jJj≲ 0.25, the NH-

NRG phase boundary (black line) matches precisely with
the Bethe ansatz prediction of Ref. [25], plotted as the red
dot-dashed line (see inset). However at stronger coupling
we find new features. For JR ≳ 0.55 the LM phase
disappears, and the Kondo effect dominates over dissipative
effects. For JR ≲ 0.55 we find reentrant Kondo physics
as jJIj is increased. Therefore, the dissipation-induced
unscreened phase in fact occupies a bounded region in
the parameter space of the NH Kondo model. Interestingly,
similar phase diagrams have been observed in other non-
Hermitian many-body systems [59–61].
The reentrant SC behavior at large JI can be understood

physically as a dissipation-induced localization at both
the impurity site and the local bath site f0σ . This state is
continuously connected to the regular Hermitian Kondo-
singlet fixed point at JI ¼ 0, both of which confer a π=2
scattering phase shift to bath electrons [52].
We analyze the RG flow in Figs. 1(b)–1(e) by tracking

the (rescaled) NRG eigenvalues EN as a function of
iteration number N. In (b) we plot the real and imaginary
parts (top and bottom panels) for a system in the SC phase,
and observe clear RG flow between LM and SC fixed
points. Although the imaginary part of EN is finite for early
iterations and initially grows, it decays to zero as the stable
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fixed point is reached. Interestingly, ImðENÞ becomes
large along the crossover between fixed points. The cross-
over at Nc between LM and SC can be interpreted as a
“temperature” scale TK ∼DΛ−Nc=2 corresponding to
Kondo screening, and we numerically extract the relation
TK ∼De−2DJR=jJj2 from the NH-NRG data in the weak-
coupling regime [52], consistent with the perturbative
scaling result of Ref. [25].
Figure 1(c) shows the analogous plots for a system in the

LM phase, which starts off close to the LM fixed point,
evolves under RG, but then returns back to it at large N.
This anomalous RG-flow reversion, identified in Ref. [25],
is further illustrated in panels (d),(e), which show the
evolution of two particular eigenvalues in the Argand plane,
with increasing N following the direction of the arrows.
Green points show the fixed point eigenvalues of the
Hermitian Kondo model to which they converge.
The phase transition is controlled by a non-Hermitian

critical fixed point [52]. At the critical point J ¼ Jc,
ImðENÞ diverges exponentially with N. Near the critical
point, we identify a scale that vanishes as T� ∼ jJ − Jcj.
NH pseudogap Kondo—To further showcase the versa-

tility of the NH-NRG method, we now turn to the NH
pseudogap Kondo model. The pseudogap bath is charac-
terized by a density of states ρðωÞ ¼ ρ0jωjrΘðD − jωjÞ
with power-law exponent r > 0, and we focus on the
particle-hole symmetric case. The standard Hermitian
version of the model has been extensively studied using
a variety of methods, including perturbative RG [51,62]
and NRG [63,64]. A transition between LM and SC phases
upon increasing JR through the critical value J�RðrÞ was
found for 0 < r < 1

2
, with r ¼ 1

2
itself playing the role of a

lower-critical dimension rc, beyond which the critical point
disappears and Kondo screening is no longer possible [51].
By contrast, for the NH variant with J∈C we find that
rc ≡ rcðJIÞ gets shifted to larger values as JI increases.

Figure 2(a) shows the phase transition boundaries obtained
from NH-NRG as a function of JR and r for different JI .
The blue line is for the Hermitian case with JI ¼ 0, which
is seen to diverge at rcð0Þ ¼ 1

2
as expected from Ref. [63].

For JI > 0 and 0 < r < 1
2
our analysis of the eigenvalue RG

flow shows that the stable fixed points obtained at large N
are identical to the Hermitian pseudogap Kondo fixed
points. Figure 2 shows the flow diagrams for JR < J�R in the
LM phase [panel (b)] and for JR > J�R in the SC phase [(c)].
Likewise, the LM phase for r > 1

2
in panel (d) shows RG

flow to the standard Hermitian LM fixed point. However,
in the region r > 1

2
and JR > J�R that would be forbidden in

the Hermitian limit, we find an entirely novel stable fixed
point; see panel (e). Remarkably, in this phase the stable
fixed point is intrinsically non-Hermitian, with a persistent
complex eigenspectrum and ImðENÞ that do not decay
withN. We dub this fixed point “complex strong coupling.”
We leave the detailed study of this phase to future work.
This behavior and the structure of the full phase diagram
is beyond the reach of perturbative techniques [30] or
methods relying on linear dispersion.
Non-Hermitian Anderson model—Finally, we consider

the physics of the NH Anderson impurity model (AIM),

ĤAIM ¼ Ĥbath þ ϵd
X

σ

d†σdσ þUdd
†
↑d↑d

†
↓d↓

þ V
X

σ

ðd†σc0σ þ c†0σdσÞ; ð2Þ

where the first line describes the isolated bath and impurity
orbital, while the tunnel coupling between them is given
in the second line. Non-Hermiticity can be introduced by
making any or all of the parameters ϵd, Ud, or V complex.
We focus here on the case where V ∈C and the bath has a
flat density of states. Various aspects of Anderson models
describing loss and dephasing have been considered before

FIG. 2. Non-Hermitian pseudogap Kondo model. (a) Critical JR separating LM and SC phases, vs pseudogap exponent r, for different
JI . Lower-critical dimension of the Hermitian model at r ¼ 0.5 shown as the dotted vertical line. (b)–(e) Eigenvalue RG flow for
systems indicated by the star points in (a). (b),(c) Representative LM and SC flows for r ¼ 0.35. (d),(e) Flow for LM and a new
“complex strong coupling” fixed point for r ¼ 0.525. NH-NRG calculations with Λ ¼ 3 and Nk ¼ 400.
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[31–34,36], but our aim here is to confirm the mapping
between NHAIM and Kondo models. The Schrieffer-Wolff
transformation [24,31,36] is perturbative and applies
strictly only in the limit of large Ud (and therefore small
J). Is the “low-energy” physics, and especially the ground
state, of the AIM described by the Kondo model beyond the
perturbative regime? Is the phase diagram of the NH Kondo
model shown in Fig. 1(a) accessible within the AIM?
We answer these questions using nonperturbative

NH-NRG. The mapping between Hermitian AIM and

Kondo models beyond Schrieffer-Wolff was first estab-
lished in Ref. [65] using NRG, and we adopt the same
strategy here for the NH case. In Fig. 3 we confirm
explicitly that the same stable fixed points are reached in
the same way under RG in both models, for both SC and
LM phases [66]. NH-NRG results show that the phase
diagram of the NH AIM in the ðReV; ImVÞ plane has the
same structure as that of the NH Kondo model, including
the reentrant Kondo behavior at large ImV [52] and
termination of the LM phase beyond a critical value of
ReV. Ferromagnetic JR < 0 is not accessible in the NH
Kondo model.
The LM phase requires finite Ud to be stabilized: it is

found to shrink upon decreasing Ud, and vanishes alto-
gether below some finite U�

d [52]. The SC phase of the NH
AIM, realized at either small or large ImV, is therefore
continuously connected to the noninteracting limitUd → 0,
and has a Fermi-liquid type description.
Conclusion and outlook—The numerical renormaliza-

tion group is often considered the gold-standard method of
choice for solving quantum impurity models [47]. Here, we
generalized the method to treat non-Hermitian impurity
problems, and applied our NH-NRG approach to the NH
Kondo and NH Anderson models. NH-NRG is nonpertur-
bative and can be applied equally well to nonintegrable
systems and those without the linear dispersion property,
such as the pseudogap Kondo model. The method provides
direct access to the RG flow of the complex many-particle
eigenvalues: it allows different phases to be fingerprinted
by identification of characteristic fixed point structures, and
emergent energy scales can be read off from the crossovers
between fixed points.
NH-NRG opens the door to studying the interplay

between NH and strong-correlation physics in a wide range
of models—for example systems with multiple impurities
[67–71] and/or multiple baths [72–75], impurities in uncon-
ventional materials [76–83], underscreened Kondo effects
with higher spin [84,85], and critical phenomena near
impurity quantum phase transitions [86,87]. NH-NRG could
be extended to compute static physical quantities such as the
impurity magnetization [52], and zero-temperature dynami-
cal quantities such as the impurity spectral function [55].
This would allow non-Hermitian lattice models [88,89] to be
studied within dynamical mean-field theory [90], using NH-
NRG as an impurity solver. Our NH-NRG code is provided
open source at Ref. [58].
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End Matter

Iterative diagonalization—Here, we give an overview
of the NH-NRG algorithm, highlighting key differences
with the Hermitian formulation described in Ref. [47].
In the following we assume a biorthonormal basis [6]
such that the inner product of left and right states
satisfies hnjmiL;R ¼ δnm. Further details can be found in
Supplemental Material [52].
At step N þ 1 of the NH-NRG calculation, we construct

the Hamiltonian matrix Hb
Nþ1 with elements

hN þ 1; k; rjLbĤNþ1jN þ 1; k0; r0iRb ; ðA1Þ

where LðR) refers to the left(right) states, and the b subscript
denotes the basis states, which are decomposed as

jN þ 1; k; riLðRÞb ¼ jkiNþ1 ⊗ jN; riLðRÞd : ðA2Þ

Here, jN; riLðRÞd are the Nk retained left(right) eigenstates of
the previous iteration satisfying ĤN jN; riRd ¼ ENðrÞjN; riRd
and hN; rjLd ĤN ¼ hN; rjLdENðrÞ, whereas jkiNþ1 ¼ fj−i;
j↓i; j↑i; j↑↓ig are the four states of the added orbital
N þ 1, labeled respectively by the index k ¼ f0;−1;
þ1; 2g, which are equal for L and R.
From the recursion relation ĤNþ1 ¼ ĤN þ T̂Nþ1 and

Eq. (A2), we may then express the matrix elements as

hN þ 1; k; rjLbĤNþ1jN þ 1; k0; r0iRb
¼ hkjNþ1hN; rjLdĤN jk0iNþ1jN; r0iRd
þ ϵNþ1

X

σ

hkjNþ1hN; rjLdf†Nþ1σfNþ1σjk0iNþ1jN; r0iRd

þ tN
X

σ

hkjNþ1hN; rjLdf†NσfNþ1σjk0iNþ1jN; r0iRd

þ tN
X

σ

hkjNþ1hN; rjLdf†Nþ1σfNσjk0iNþ1jN; r0iRd : ðA3Þ

This expression simplifies to

hN þ 1; k; rjLbĤNþ1jN þ 1; k0; r0iRb
¼ δkk0δrr0 ðENðrÞ þ jkjϵNþ1Þ
þ ð−1ÞktN

X

σ

Mσ
kk0 hN; rjLdf†NσjN; r0iRd

þ ð−1Þk0 tN
X

σ

Mσ
k0khN; rjLdfNσjN; r0iRd ; ðA4Þ

where in the last two lines we inserted the identity between
the creation and annihilation operators [52]. Here, Mσ

kk0 ¼
ðMσ

k0kÞ† denotes the trivial matrix element hkjfNþ1σjk0iNþ1

whose value does not depend on N.
Thus we can construct the Hamiltonian matrix Hb

Nþ1 at
NRG iteration N þ 1 using information from iteration N.
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Specifically, we need the set of complex eigenvalues
ENðrÞ, and the matrix elements hN; rjLdf†NσjN; r0iRd and
hN; rjLdfNσjN; r0iRd , which in the NH case are not Hermitian
conjugates and need to be computed separately.
With Hb

Nþ1 in hand, we diagonalize the matrix to obtain
the eigenvalues ENþ1 and the left and right eigenvectors

jN þ 1; riLðRÞd . Specifically, Hb
Nþ1 ¼ UR

Nþ1H
d
Nþ1ðUL

Nþ1Þ†
where Hd

Nþ1 is the diagonal matrix of eigenvalues ENþ1

and URðLÞ
Nþ1 is a matrix whose columns are the

right(left) eigenvectors. Therefore we can expand the
eigenstates as

jN þ 1; riRðLÞd ¼
X

m;s

URðLÞ
Nþ1ðr;m; sÞð†ÞjN þ 1;m; siRðLÞb

≡X

m;s

URðLÞ
Nþ1ðr;m; sÞð†ÞjmiNþ1jN; siRðLÞd :

ðA5Þ

We use this to construct the nontrivial matrix elements
required for the next step,

hN þ 1; rjLdf†Nþ1σjN þ 1; r0iRd
¼

X

m;m0;s

Mσ
m0mU

L
Nþ1ðr;m; sÞ†UR

Nþ1ðr0;m0; sÞ ðA6Þ

hN þ 1; rjLdfNþ1σjN þ 1; r0iRd
¼

X

m;m0;s

Mσ
mm0UL

Nþ1ðr;m; sÞ†UR
Nþ1ðr0;m0; sÞ: ðA7Þ

Note that only the “lowest” Nk eigenstates are retained at
each step, meaning that the computational complexity is
approximately constant at each step. In practice this Fock
space truncation is done by retaining states with the lowest
real part of the complex eigenvalues EN .
As such, the chain can be built up iteratively, starting

from Ĥ0 consisting of just the impurity and the Wilson zero
orbital. Since states with large ReðENÞ are discarded at each
step, we focus on the states with progressively smaller
ReðENÞ as the calculation proceeds. To analyze the RG
flow we specify EN with respect to the state with the lowest
ReðENÞ at that iteration, and rescale by a factor of ΛN=2. It
is these rescaled eigenvalues that are plotted in the figures.

Truncation schemes and numerical precision—
Through extensive numerical testing, we found that
truncation to the Nk states with the lowest ReðENÞ at
each step yields the most stable and accurate results. In
this Letter we presented results for Λ ¼ 3 and Nk¼400,
which we explicitly checked were numerically converged
with respect to increasing Nk (essentially no change in
the RG flow was observed by increasing Nk to 1024
kept states). In certain cases we observed numerical

instabilities in the diagonalization that were completely
resolved by using high-precision numerics. All of the
results presented were confirmed to be converged using
128-bit precision complex numbers [91].
Other truncation schemes (discussed further below)

were investigated. For example, truncation to the Nk
states with the lowest magnitude jEN j produces a some-
what different set of states being tracked along the RG
flow. However, retained states common to both truncation
schemes were found to have exactly the same RG flow,
provided Nk was sufficiently large. Overall, truncation by
lowest ReðENÞ is preferred due to advantageous stability
and accuracy with respect to Nk, and less frequent need
for high-precision numerics.

Validation and benchmarking of method—The NH-
NRG method for the AIM works with equal ease for
any interaction strength Ud. In particular, the NH-NRG
algorithm works exactly the same for the trivial case
Ud ¼ 0 as for the nontrivial interacting case with
Ud > 0. For Ud ¼ 0 we can also simply diagonalize the
single-particle Hamiltonian matrix and then construct the
many-particle states from these. Thus in this limit we
can exactly diagonalize the full impurity-and-Wilson-
chain composite system without any truncation or
approximation. This provides a stringent check on our
NH-NRG results by direct comparison.
Our results of this testing are shown in Fig. 4 for the

Ud ¼ 0 AIM (also known as the resonant level model) in
which a noninteracting impurity is coupled to the usual
(flat-band) Wilson chain of N þ 1 sites. We compare NH-
NRG results (red diamond points) with Nk ¼ 1024 kept
states, and exact diagonalization of the tight-binding model
(black circle points). In the latter we construct the full 4Nþ2

dimensional Fock space. Complex eigenvalues of ĤN are
plotted for different N in the Argand plane in Fig. 4. Top
row (a) shows results for the truncation scheme “LowRe” in
which the Nk states with the lowest ReðENÞ are retained;
whereas the bottom row (b) is for the “LowMag” scheme
where the Nk states with the lowest jEN j are instead kept.
Although a different set of states in the NH-NRG calcu-
lation is retained in either case, these accurately match with
the corresponding exact diagonalization results from the
tight-binding chain. We note that the NH-NRG results
for N ¼ 5 in panel (b) are highly degenerate, with the
Nk ¼ 1024 retained states giving only three distinct eigen-
values. The kept eigenvalues in (a) are far less degenerate.
In the case of high degeneracy, which poses a challenge
for numerical diagonalization and biorthonormalization of
NH matrices, we add a physically inconsequential on-site
disorder to the Wilson chain of width 10−7, which lifts the
degeneracy. This precaution was not required for any of the
interacting models studied. Excellent agreement was also
confirmed for large ImV in the nonperturbative regime far
from the Hermitian limit.
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Additional examples of different truncation schemes and benchmarking for different noninteracting models are
provided in Supplemental Material [52]. We have also checked that our NH-NRG code reproduces the results of
standard NRG when Ĥ0 is Hermitian.

FIG. 4. Validation of NH-NRG method for the noninteracting AIM with Ud ¼ 0. The full set of complex eigenvalues are constructed
from exact diagonalization of ĤN and shown in the Argand plane for N ¼ 2, 3, 4, 5 as the black circle points. NH-NRG results are
shown as the red diamond points: the minðNk; 4Nþ2Þ retained states match precisely with the exact results. Top row (a) shows NH-NRG
truncation scheme LowRe in which the lowest Nk states sorted by ReðENÞ are kept. Bottom row (b) shows an alternative truncation
scheme LowMag, where states are sorted by jEN j. Shown for Λ ¼ 3, Nk ¼ 1024, ϵd ¼ 0, V ¼ 0.1 − 0.08i. Eigenvalues rescaled by
ΛN=2 are plotted with respect to the ground state of that iteration.
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In this Supplemental Material we provide supporting information and data.

• In Section S.I, we discuss some basic properties of non-Hermitian (NH) systems.

• In Section S.II, we provide the complete derivation of the iterative construction of the Hamiltonian used in the
non-Hermitian numerical renormalization group (NH-NRG) method.

• In Section S.III, we illustrate alternative truncation schemes for the NH-NRG procedure.

• In Section S.IV, we provide additional eigenvalue flow diagrams for the NH Anderson Impurity Model (AIM).

• In Section S.V, we discuss the evolution of the Kondo temperature TK .

• In Section S.VI, we present further results for the critical point of the NH Kondo model.

• In Section S.VII, we discuss the physical interpretation of the re-entrant strong-coupling (SC) behavior.

• In Section S.VIII, we discuss convergence of NH-NRG results in the Λ → 1 limit.

• In Section S.IX, we present some initial results for the impurity magnetization in the NH Kondo model.

S.I. NON-HERMITIAN SYSTEMS

Before jumping into the iterative construction procedure used in NH-NRG, we first provide a brief discussion of
NH matrices which will come in useful later. See also Refs. [1, 2] for discussions of bi-orthogonal quantum mechanics.

For an NH system, for which Ĥ ̸= Ĥ†, the left and right eigenvectors are defined such that,

Ĥ |Ej⟩R = λj |Ej⟩R , Ĥ† |Ej⟩L = λ∗
j |Ej⟩L (S.1)

⟨Ej |R Ĥ† = ⟨Ej |R λ∗
j , ⟨Ej |L Ĥ = ⟨Ej |L λj . (S.2)

Although the left and right eigenvectors are not individually orthonormal, they may form a bi-orthogonal basis if the
eigenspectrum is non-degenerate. In the following we assume this property, which can be defined as,

⟨Ei|Ej⟩LR
= δij . (S.3)

Here we have also bi-normalized the basis. We note that a bi-orthonormal basis is not the default output for left
and right eigenvectors from most standard numerical eigensolvers (e.g. via Python, Julia, or Fortran) and so the
bi-normalization typically has to be done manually.

To bi-normalize the left and right eigenvectors, we first compute the overlaps,

LRj = ⟨Ej |Ej⟩LR
, (S.4)

and then, provided the corresponding left and right eigenvectors are non-orthogonal, we rescale the vectors,

|Ej⟩R → |Ej⟩R√
LRj

, |Ej⟩L → |Ej⟩L√
LRj

∗ , (S.5)

which ensures ⟨Ej |Ej⟩LR
= 1.

Assuming bi-orthonormality now, an NH matrix Ĥ can be decomposed in terms of its left and right eigenvectors,

Ĥ =
∑
j

λj |Ej⟩⟨Ej |RL , ⟨Ej |L Ĥ |Ek⟩R = δjkλj . (S.6)
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With some bi-normalized basis |ϕj⟩L(R)
of left(right) states, we can construct the Hamiltonian matrix Hϕ with

elements [Hϕ]ij = ⟨ϕi|L Ĥ |ϕj⟩R. Numerical diagonalization of this matrix yields URHE (UL)† = Hϕ where [HE ]ij =
δijλj and the columns of the matrices UR and UL contain the right and left eigenvectors. It follows that,

(UL)†UR = I ; tr
[
(UL)†UR

]
= dim(H) . (S.7)

However, note that (UL(R))†UL(R) ̸= I since the left and right sets themselves are not orthonormal.
Importantly, for bi-orthonormal systems the identity can be resolved as,

1 =
∑
j

|ϕj⟩ ⟨ϕj |RL
. (S.8)

One issue with the bi-orthonormalization procedure is that it requires a non-degenerate eigenspectrum [1]. In gen-
eral, degeneracies can arise in three ways: (i) due to symmetries of the system; (ii) accidental degeneracies; and (iii)
emergent degeneracies. For degeneracies due to exact symmetries of the bare Hamiltonian, the solution is to label
states by their associated conserved quantum numbers and block-diagonalize the Hamiltonian separately in each quan-
tum number subspace. A bi-orthonormal basis can then be defined separately in each block and different degenerate
components of a symmetry multiplet are treated independently. For accidental degeneracies, often numerical error
even at machine precision level is sufficient to distinguish states and eliminate problems with bi-orthonormalization.
These issues were discussed in a different context for NRG calculations in Ref. [3]. We note that the procedure is
stabilized by simply using 128-bit precision numerics, which is typically enough to distinguish accidental degeneracies,
which are of course always approximate in practice. Another simple solution is to add to the Hamiltonian a physi-
cally inconsequential disorder perturbation of very small magnitude, which has the effect of lifting the degeneracies.
Finally, in the context of quantum impurity problems, we note that low-energy fixed points can have larger emergent
symmetries than the bare model Hamiltonian. For example the one-channel, spin- 12 anisotropic Kondo model has an
isotropic strong coupling stable fixed point [4]; whereas the two-channel Kondo model has a large emergent SO(8)
symmetry at its critical point [5]. In these cases, one might expect additional degeneracies that cannot be separated
into distinct quantum number blocks. However, these emergent symmetries only pertain asymptotically after very
many NRG iterations, and at low energies. In practice, the degeneracies near the fixed point are always approximate
and again, the use of high-precision numerics solves the problem.

S.II. ITERATIVE CONSTRUCTION AND DIAGONALIZATION IN NH-NRG

In the following we assume that left and right vectors of NH matrices are bi-orthonormal. The NRG procedure is
defined by the recursion relation,

ĤN+1 = ĤN + T̂N+1 (S.9)

which is initialized by Ĥ0, consisting of the impurity degrees of freedom and the Wilson chain ‘zero’ orbital. Here the
operator T̂N+1 = T̂ a

N+1 + T̂ b
N+1 + T̂ c

N+1 is defined by,

T̂ a
N+1 = ϵN+1

∑
σ

f†
N+1σfN+1σ ; T̂ b

N+1 = tN
∑
σ

f†
NσfN+1σ ; T̂ c

N+1 = tN
∑
σ

f†
N+1σfNσ (S.10)

At step N + 1 of the iterative diagonalization process, we add on the new Wilson chain site |k⟩N+1, where the index
k = {0,−1,+1, 2} labels the four possible configurations of that site, |k⟩N+1 = {|−⟩ , |↓⟩ , |↑⟩ , |↑↓⟩} respectively. Since
the part of the Hamiltonian describing the Wilson chain is Hermitian, the left and right eigenstates for the isolated
Wilson orbital |k⟩N+1 are equal and so we do not specify a L,R superscript. At this step we need to construct the

Hamiltonian matrix Hb
N+1 with the following matrix elements,

[Hb
N+1]kr,k′r′ = ⟨N + 1; k; r|Lb ĤN+1 |N + 1; k′; r′⟩Rb (S.11)

where the b subscript denotes that these are basis states (rather than eigenstates), which are decomposed as,

|N + 1; k; r⟩L(R)
b = |k⟩N+1 ⊗ |N ; r⟩L(R)

d (S.12)

for left(right) basis states. The latter are given in terms of the left(right) eigenstates in the diagonal representation

(d subscript) of the previous iteration, denoted |N ; r⟩L(R)
d . Therefore, these satisfy ĤN |N ; r⟩Rd = EN (r) |N ; r⟩Rd and

⟨N ; r|Ld ĤN = ⟨N ; r|Ld EN (r) where EN (r) are the complex eigenvalues of the previous iteration.



S3

We therefore have four terms to compute from Eqs. (S.9), (S.10):

⟨k|N+1 ⟨N ; r|Ld ĤN |k′⟩N+1 |N ; r′⟩Rd , (S.13)

⟨k|N+1 ⟨N ; r|Ld T̂ a
N+1 |k′⟩N+1 |N ; r′⟩Rd , (S.14)

⟨k|N+1 ⟨N ; r|Ld T̂ b
N+1 |k′⟩N+1 |N ; r′⟩Rd , (S.15)

⟨k|N+1 ⟨N ; r|Ld T̂ c
N+1 |k′⟩N+1 |N ; r′⟩Rd . (S.16)

Since ĤN comprises only even products of operators and does not act on degrees of freedom in orbital N + 1,
Eq. (S.13) simplifies to:

⟨k|k′⟩N+1 ⟨N ; r|Ld ĤN |N, r′⟩Rd = δkk′ ⟨N ; r |N ; r′⟩L,R
d EN (r′) = δkk′δrr′EN (r) . (S.17)

Similarly, in Eq. (S.14) T̂ a
N+1 consists of a number operator acting only on degrees of freedom of orbital N +1 and

so reduces to,

⟨k|N+1 T̂
a
N+1 |k′⟩N+1 ⟨N ; r|N ; r′⟩L,R

d = δkk′δrr′ϵN+1|k| , (S.18)

where we used the fact that when using our convention for the index k, the spin-summed occupation number for state
|k⟩N+1 in orbital N + 1 is nk = |k|.
Eqs. (S.15) and (S.16) are more complicated since they connect the part of the chain spanned by ĤN to the added

orbital N + 1. To make progress we insert the identity,

1N+1 =
∑
m,s

|m⟩N+1 |N ; s⟩Rd ⟨N ; s|Ld ⟨m|N+1 , (S.19)

between the creation and annihilation operators of T̂ b
N+1 and T̂ c

N+1 in Eq. (S.10). Then Eq. (S.15) becomes,

tN
∑
σ,m,s

⟨N ; r|Ld ⟨k|N+1 f
†
Nσ |m⟩N+1 |N ; s⟩Rd ⟨N ; s|Ld ⟨m|N+1 fN+1σ |k

′⟩N+1 |N ; r′⟩Rd (S.20)

=tN
∑
σ,m,s

(−1)k ⟨k|m⟩N+1 ⟨N ; r|Ld f†
Nσ |N ; s⟩Rd · ⟨m|N+1 fN+1σ |k

′⟩N+1 · ⟨N ; s|N ; r′⟩L,R
d (S.21)

=tN
∑
σ

(−1)kMσ
k,k′ · ⟨N ; r|Ld f†

Nσ |N ; r′⟩Rd , (S.22)

where we have defined Mσ
k,k′ to denote the matrix element ⟨k|N+1fN+1σ|k′⟩N+1, which is independent of the value of

N . Note also that (Mσ
k,k′)† = Mσ

k′,k. The factor of (−1)k comes from the fermionic anticommutation when reordering
operators.

Similarly for Eq. (S.16), we obtain,

tN
∑
σ

(−1)k
′
Mσ

k′,k · ⟨N ; r|Ld fNσ |N ; r′⟩Rd . (S.23)

The nontrivial matrix elements ⟨N ; r|Ld f†
Nσ |N ; r′⟩Rd and ⟨N ; r|Ld fNσ |N ; r′⟩Rd must be computed at the previous step

and saved. Note that they are not simple Hermitian conjugates of each other and must be calculated separately.

From these expressions, one may construct the NH Hamiltonian ĤN+1 at step N +1 from information obtained at

step N – specifically, the eigenvalues EN (r), and the matrix elements ⟨N ; r|Ld f†
Nσ |N ; r′⟩Rd and ⟨N ; r|Ld fNσ |N ; r′⟩Rd .

With Hb
N+1 now constructed, we can diagonalize this matrix to obtain the eigenvalues EN+1 and the left and right

eigenvectors |N + 1; r⟩L(R)
d . In particular, we can write Hb

N+1 = UR
N+1H

d
N+1(U

L
N+1)

† where Hd
N+1 is the diagonal

matrix of eigenvalues EN+1 and U
R(L)
N+1 is a matrix whose columns are the right(left) eigenvectors. This provides the

set of complex eigenvalues EN+1 needed for the next step.

What about the matrix elements of the fN+1σ and f†
N+1σ operators? These are also needed for the next step. To

compute these, we expand the eigenstates as,

|N + 1; r⟩R(L)
d =

∑
m,s

U
R(L)
N+1 (r;m, s)(†) |N + 1;m; s⟩R(L)

b

≡
∑
m,s

U
R(L)
N+1 (r;m, s)(†) |m⟩N+1 |N ; s⟩R(L)

d . (S.24)
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FIG. S1. Illustration of alternate truncation schemes for NH-NRG on the non-interacting (Ud = 0) NH AIM (also known as the
non-Hermitian RLM). The plots are analogous to those in Fig. E1 of the main text, and the same parameters are used (Λ = 3,
Nk = 1024, ϵd = 0, V = 0.1− 0.08i). Top row panels (a) show truncation to the lowest Nk states ordered by Im(EN ); bottom
row panels (b) show a hybrid scheme in which the ‘ground state’ with lowest Re(EN ) is first subtracted, and then states are
sorted by magnitude, |EN − Egs

N |. NH-NRG results as red-diamonds, exact diagonalization results as black circle points.

We use this to construct the matrix element,

⟨N + 1; r|Ld f†
N+1σ |N + 1; r′⟩Rd =

∑
m,s
m′,s′

UL
N+1(r;m, s)†UR

N+1(r
′;m′, s′) ⟨N ; s|N ; s′⟩L,R

d ⟨m|N+1 f
†
N+1σ |m

′⟩N+1 (S.25)

=
∑

m,m′,s

Mσ
m′m UL

N+1(r;m, s)†UR
N+1(r

′;m′, s) (S.26)

and similarly

⟨N + 1; r|Ld fN+1σ |N + 1; r′⟩Rd =
∑

m,m′,s

Mσ
mm′ UL

N+1(r;m, s)†UR
N+1(r

′;m′, s) (S.27)

Thus, we have all of the ingredients to proceed to the next step. In this way, the entire chain can be built up orbital
by orbital, starting from Ĥ0, which one explicitly constructs ‘by hand’ in the initialization step.

Without truncation, the Fock space would of course grow by a factor of four at each iteration. However, due to the
exponentially-decaying Wilson chain parameters, we have a scale separation from iteration to iteration that motivates
a truncation to just the Nk lowest-lying states at each iteration, meaning that the computational complexity of the
NH-NRG calculation scales linearly with N rather than exponentially. Of course, with complex eigenvalues EN at
each step, there is a subtlety about what is meant by ‘lowest lying’, and there are several truncation schemes that one
could envision. The simplest, and the one that is closest to that employed in regular Hermitian NRG, is to truncate to
the lowest Nk eigenstates ordered by Re(EN ). This turns out to be the most numerically stable and accurate scheme,
which we have confirmed reproduces correctly the exact results of exact diagonalization in the non-interacting limit.
These issues are explored in more detail in the following sections.
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FIG. S2. Analogous plots as shown in Figs. E1 and S1, but here in the strongly non-perturbative regime, far from the Hermitian
limit, using V = 1− 1i. All other parameters are kept the same for the purposes of comparison.

S.III. ALTERNATIVE TRUNCATION SCHEMES

S.III.A. Non-Hermitian resonant level model

In the main text, we presented results for strongly-correlated quantum impurity problems obtained by NH-NRG
using a truncation scheme (‘LowRe’) in which the lowest Nk states were kept at each step, sorted by Re(EN ). In the
End Matter we presented some justification for that, by consideration of the non-interacting limit of the AIM (Ud = 0),
also known as the ‘resonant level model’ (RLM). Being quadratic, the RLM can be solved exactly by diagonalizing
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FIG. S3. Illustration of different truncation schemes for NH-NRG for the free Wilson chain with imaginary on-site potentials
ϵn = −itn, where tn are the usual Wilson chain coefficients for a flat conduction band of width D = 1. The four truncation
schemes discussed in the text are shown, comparing NH-NRG results (red diamonds) with exact diagonalization (black circle

points) for the complex eigenvalues of ĤN for different iterations N . The full spectrum from exact diagonalization is shown in
each case; NH-NRG reconstructs a different part of this spectrum due to the different truncation schemes employed. Plotted
for Λ = 3 and Nk = 400.
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FIG. S4. Non-Hermitian Anderson impurity model (Ud = 0.3, ϵd = −0.15, Λ = 3, Nk = 400, 128-bit precision): Eigenvalue RG
flow diagrams as Im(V ) is made more negative, showing (a) SC phase; (b) LM phase; and (c) re-entrant SC phase.

the Hamiltonian in the single-particle sector (an (N + 2) × (N + 2) matrix at step N), and then constructing the
4N+2 many-particle states as simple product states from these – a trivial combinatorial exercise. As such, the full
eigenspectrum of the NH-NRG Hamiltonian ĤN can be obtained by exact diagonalization for essentially any N of
interest, without any truncation, in this non-interacting limit. On the other hand, NH-NRG works in precisely the
same way independently of Ud and so the interacting AIM and non-interacting RLM are treated identically from an
algorithmic point of view. The non-interacting RLM therefore provides a stringent check of our NH-NRG results.
Fig. E1(a) confirmed that truncation by lowest Re(EN ) correctly reproduces the exact eigenvalues at each step, for
the retained states. One can also truncate by keeping the Nk states with lowest absolute magnitude of |EN |, as shown
in Fig. E1(b) – although in practice we found this to be less numerically stable. We dub this scheme ‘LowMag’.

In Fig. S1 we consider two other truncation schemes. In the top row panels (a) we show truncation (‘LowImag’)
to the lowest Nk states ordered by Im(EN ), which targets a different set of kept states. While this method works
initially, after a few steps it starts to break down. For N = 5 we see that the NH-NRG eigenvalues no longer match
those from exact diagonalization. In the bottom row panels Fig. S1(b), we use a hybrid scheme (‘LowReMag’) in
which the ‘ground state’ with the lowest Re(EN ) is first subtracted, and then states are ordered by their magnitude,
|EN −Egs

N |. This truncation scheme also works very well and seems to be both accurate in reproducing the results of
exact diagonalization, as well as being numerically stable. In both cases we plot the rescaled many-particle eigenvalues,
comparing NH-NRG (red diamonds) with exact diagonalization (black circle points).

In Fig. S2 we present the analogous results shown in Figs. E1 and S1, but this time for V = 1 − 1i. This is in
a strongly non-perturbative regime, far from the Hermitian limit. Again we see precise agreement between exact
diagonalization results and NH-NRG, establishing the applicability of NH-NRG in this nontrivial regime. Although
here all truncation schemes seem to work well, we found that truncation by the lowest real-part of EN is still the best
choice in terms of numerical stability.

S.III.B. Free Wilson chain with imaginary potentials

As a further demonstration, we consider NH-NRG for the free Wilson chain (no impurity). We introduce non-
Hermiticity to the Wilson chain by using complex Wilson chain potentials. Specifically, we choose ϵn = −itn, where
tn are the usual Wilson chain hopping parameters for a metallic flat band with bandwidth D = 1 as before. For the
Hermitian symmetric flat-band Wilson chain, ϵn = 0, so introducing imaginary potentials down the chain simulates
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FIG. S5. Kondo temperature for the non-Hermitian Kondo model at weak coupling. The crossover iteration Nc between LM
and SC fixed points is extracted from NH-NRG eigenvalue flow diagrams for various JR and JI in the weak coupling (small
|J |) regime. Shown for Λ = 3, Nk = 400.

a kind of open Wilson chain where each site is subject to dissipation and the states have a finite lifetime. Our choice
of ϵn = −itn corresponds to a strong non-Hermitian perturbation on the scale of the bandwidth, and is therefore
a stringent check. This setup can be treated in NH-NRG very simply – in practice we project out the impurity by
setting Ud = V = 0 and ϵd ≫ D. The resulting NH Wilson chain is simply a non-interacting tight-binding chain
and can be solved exactly as per the results in the previous section. In Fig. S3 we compare NH-NRG results (red
diamonds) with those of exact diagonalization of the tight-binding model (black circle points), for the four truncation
schemes discussed above. We again give results for the rescaled many-particle eigenvalues. The results vividly show
that NH-NRG works well in all cases, just reconstructing different parts of the spectrum when different truncation
schemes are used.

S.IV. ADDITIONAL ANDERSON IMPURITY MODEL DATA

In the main text we presented NH-NRG results for the NH AIM. Here in Fig. S4 we show that by increasing the
magnitude of the imaginary part of the impurity-bath hybridization V , one first observes a quantum phase transition
from SC to LM, and then back to SC. This re-entrant Kondo behavior is predicted from the NH Kondo model (see
Fig. 1(a) of the main text), but is also accessible in the parent AIM. For strong enough Re(V ) the LM phase disappears
entirely. Thus the topology of the phase diagrams for Kondo and Anderson models is the same (albeit that naturally
the details are somewhat different). This lends further support to the mapping between AIM and Kondo in the
non-perturbative strong-coupling regime beyond Schrieffer-Wolff.

We note that the Schrieffer-Wolff transformation between dissipative AIM and NH Kondo model derived in Ref. [6]
gives strictly antiferromagnetic Re(J) > 0 and Im(J) < 0. This is the regime we focused on for the NH Kondo model
in Fig. 1. With NH-NRG we indeed found that the ferromagnetic regime Re(J) < 0 was not accessible within the NH
AIM. However, the ferromagnetic NH Kondo model might be interesting to study in its own right. We leave this to
future work.

S.V. KONDO TEMPERATURE

Here, we numerically extract the crossover iteration number Nc, characterizing the flow between LM and SC fixed
points from the RG flow diagrams of the NH-NRG. In Fig. S5, we plot the extracted Nc as a function of the complex
coupling J = JR − iJI . At weak coupling (large Nc), we find excellent agreement with the predicted form of TK

discussed in the main text. The running NRG energy scale [7] is given by E ∼ DΛ−N/2 and so we identify the
Kondo ‘temperature’ TK ∼ DΛ−Nc/2 in terms of the crossover iteration Nc. Our data is consistent with the relation

TK ∼ De−2DJR/|J|2 which implies Nc = a + bJR/|J |2 with a an irrelevant constant that depends on the specific
definition of TK used, and b = 4/ ln Λ. The behavior of TK at stronger coupling was found to be more complicated.
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FIG. S6. RG flow of the NH-NRG complex eigenvalues EN with iteration number N , showing the real and imaginary parts
in the top and bottom panels, for representative systems in the SC (a) and LM (b) phases. Shown for Λ = 3, Nk = 200 at
128-bit precision.

FIG. S7. Crossover scale for the non-Hermitian Kondo model near critical coupling. The crossover iteration N∗ between LM
and SC fixed points is extracted from NH-NRG eigenvalue flow diagrams for various JR and JI in the regime of critical coupling
Jc. Shown for Λ = 3, Nk = 200 at 128-bit precision.

S.VI. CRITICAL POINT OF THE NH KONDO MODEL

In the main text we identified a phase transition in the metallic NH Kondo model between SC and LM phases for
JR > 0 as a function of JI . In Fig. S6 we show the RG flow on either side of the transition at J = Jc, obtained by
NH-NRG. We tune JI very close to the transition in both cases, and see an extended RG flow in the vicinity of a
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FIG. S8. Eigenvalue RG flows in the non-interacting limit of the NH AIM (Ud = ϵd = 0), obtained by NH-NRG. Star points
show comparison to exact diagonalization results. For any value of ImV we see the same low-energy SC physics. Finite Ud is
required to stabilize the LM phase. Computed using Λ = 3 and Nk = 600.

novel critical fixed point. The critical fixed point is not of LM or SC type, and cannot be understood as a simple
mixture of LM and SC states. In particular, we see a diverging imaginary part to the NRG energy levels at the critical
point, with Im(EN ) growing exponentially with N . When the system eventually crosses over to either SC or LM,
the imaginary part of the eigenvalues disappears, and the usual Hermitian Kondo fixed point structures emerge. We
therefore conclude that the transition is controlled by an unusual non-Hermitian critical fixed point.

In the vicinity of the transition near Jc, we identify a critical scale T ∗ that vanishes as the transition is approached.
From the NH-NRG data we identify a crossover iteration number N∗ for flow from the critical fixed point to either
the LM or SC fixed points. In Fig. S7 we show the evolution of N∗ with |J − Jc|, confirming the scaling behavior
N∗ = a − b ln |J − Jc|. Since the corresponding crossover energy scale in NRG is T ∗ ∼ Λ−N∗/2, we may write
T ∗ ∼ |J − Jc|s with s = 1

2b ln(Λ). With Λ = 3 we extracted b = 1.885 which yields s ≃ 1. Although for Hermitian
systems this scaling might suggest a first-order transition, the appearance of a distinct critical fixed point here indicates
otherwise. The non-Hermitian critical point appears to be rather exotic, possibly connected with an exceptional point
of the model. A full understanding clearly requires further detailed study, which we leave for future work.

S.VII. PHYSICAL INTERPRETATION OF RE-ENTRANT STRONG-COUPLING BEHAVIOR
AND CONTINUITY TO THE NON-INTERACTING LIMIT

The Hermitian Kondo model (Eq. 1 with JI = 0) is characterized by an RG flow to the strong-coupling (SC) fixed
point for any JR > 0 [7]. This is associated with the formation of a Kondo spin-singlet state between the impurity
spin- 12 and the (renormalized) Wilson orbital f0σ. At low energies ≪ TK the physics can be described in terms of
a (nearly) free Wilson chain, with the impurity and the f0σ orbital effectively removed, or frozen out. This is the
Fermi-liquid picture, in which the low-energy physics can be viewed in terms of a free conduction electron system
with a modified boundary condition, corresponding to a π/2 scattering phase shift [4].

Since the exchange coupling J lives on the bond between the impurity spin and the Wilson zero-orbital f0σ,
dissipative effects modeled by finite JI > 0 in the non-Hermitian case can localize the f0σ orbital as well as the
impurity, if sufficiently strong. For small JI ≪ JR, the Kondo effect dominates and the impurity spin is screened by
conduction electrons, leading to a ground state described by the SC fixed point as per the Hermitian case. At larger
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FIG. S9. Phase diagram for the NH AIM for finite ReV = 0.08 as a function of Ud and ImV , computed using NH-NRG (Λ = 3
and Nk = 600). A single SC phase continuously connects states at large and small ImV with the non-interacting limit Ud → 0.

JI , dissipation tends to localize the impurity spin, freezing it out [8]. However, if JI ≪ D then strong electronic
tunneling into the site f0σ from the rest of the bath will keep this site delocalized. This state is described by the local
moment (LM) fixed point – a free Wilson chain with only the impurity removed (zero phase shift). But when JI ≫ D,
both the impurity and the bath site f0σ are localized. At low energies, this again corresponds to a free Wilson chain
with one site removed. Therefore at large JI we expect to recover the SC fixed point behavior – even though the
mechanism is quite different for small and large JI . We see in Fig. 1a of the main text that in fact these two regimes
are continuously connected (without an intervening phase transition) by going to large JR past J∗

R where the LM
phase terminates. The re-entrant SC behavior at large JI is in fact just one region of a single SC phase, shared with
Kondo SC physics at JI = 0. The SC fixed point structure is identical throughout this phase.

This behavior is more plainly understood in the AIM, which features a correlated fermionic impurity site (rather
than a strict spin- 12 ), tunnel-coupled by V to the bath. In the non-Hermitian variant, the V is complex, see Eq. 2 of
the main text. The NH Kondo model is the low-energy effective model for the NH AIM when the impurity is singly-
occupied (see Fig. 3 of the main text) and they share the same underlying physics and fixed points in this regime.
The Ud = 0 non-interacting limit of the AIM can be solved exactly without approximation by exact diagonalization
in the single-particle sector, followed by simple reconstruction of the many-particle (product) states. In this limit,
we find SC physics for all values of the complex coupling V . This is illustrated in Fig. S8, where NRG results are
compared with exact diagonalization results (star points), for different ImV . We conclude that a finite correlation
strength Ud is required to stabilize the LM phase. At Ud = 0 we have no LM physics and we have an SC ground
state independently of the strength of the dissipation described by ImV . This shows that indeed the Kondo-screened
state (e.g. at ImV = 0 and ReV > 0) and the dissipation-induced localized state (e.g. at ReV = 0 and ImV > 0) are
equivalent and continuously connected through a single SC phase.

However, we see no re-entrant SC behavior in the non-interacting limit Ud = 0 because there is no intervening
LM phase. Our argument is completed by considering continuity of the interacting AIM to the non-interacting limit
as Ud → 0. In Fig. S9 we take fixed ReV = 0.08 and map out the phase diagram as a function of Ud. Here we
immediately see that the re-entrant SC behavior at large ImV is not only connected to the Kondo SC behavior at
small (and even zero) ImV , but it is also shared by the non-interacting limit Ud = 0 for which we have an exact
solution. Interestingly, for any finite ReV , we have a finite, minimum critical U∗

d below which the LM phase vanishes.
To further emphasize this point, in Fig. S10 we show how the re-entrant SC behavior at finite Ud and large ImV

is identical to that obtained at Ud = 0, in terms of RG eigenvalue flows. The re-entrant SC behavior is therefore
understandable as part of a single SC phase in the higher-dimensional space of V and Ud, and is present already in
the exactly-solvable non-interacting limit. This description is obscured in the original NH Kondo model because any
finite J can be regarded in some sense as being strongly interacting, and the impurity local moment is presupposed.
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FIG. S10. Comparison of NH-NRG eigenvalue flows in the interacting (a) and non-interacting (b) AIM. The latter is compared
with exact diagonalization results for the fixed point (star points). Computed using Λ = 3, Nk = 600, and V = 0.08− 0.5i.

Our conclusion is that finite Ud is required to realize the LM phase in the NH AIM. The LM phase shrinks and
vanishes in the non-interacting limit Ud → 0. The SC physics at finite Ud can therefore be understood in terms of
Fermi liquid theory as a renormalized version of the exactly-solvable Ud = 0 SC state, even in the non-Hermitian case
of finite ImV .

S.VIII. CONVERGENCE OF NH-NRG RESULTS AS Λ → 1

As explained in the main text, at the heart of the NRG approach is a logarithmic discretization of the free continuum
bath density of states, controlled by the discretization parameter Λ [7]. This represents a coarse-graining in which some
bath states are thrown away. However, as shown by Wilson in the seminal paper Ref. [7], the neglected states couple
only indirectly and weakly to the impurity; the fixed points, emergent scales, and RG flows are rather insensitive to the
choice of Λ when Λ > 1. Although Λ = 1 corresponds to the exact, non-discretized model, Λ > 1 is needed to justify
the Fock-space truncation at each step – itself required to avoid exponential complexity scaling of the NRG calculation
with increasing N . Indeed, while discretization artifacts get worse with increasing Λ, the energy-scale separation and
therefore the validity of truncation gets better with increasing Λ. Therefore NRG constitutes a compromise where a
finite value Λ > 1 is chosen. As Wilson remarkably showed, this compromise still leads to essentially exact results
for calculated physical quantities due to the RG structure of the problem and universality – provided enough states
Nk are kept in the calculation at each step. Values of Λ = 2–3 are very standard, but much larger values have also
been successfully used in the literature [9]. We illustrate this fact in Fig. S11 where we use our NRG implementation
to compute the impurity entropy as a function of temperature for the AIM in the Hermitian limit, ImV = 0, taking
different values of Λ. Computed thermodynamic quantities such as this are essentially invariant to decreasing Λ and
are well-converged.

Turning now to NH-NRG and our solution of the NH Kondo model, we used Λ = 3 to obtain the results presented
in the main text. Similarly to the Hermitian limit, the RG flows in the majority of the phase diagram were found to
be very insensitive to the choice of Λ. However, close to the SC/LM quantum phase transition, the system becomes
sensitive to small perturbations. Especially for large values of |J | near the upper (re-entrant) transition, we found
some small drift in the extracted value of the critical J∗

I upon decreasing Λ towards Λ = 1. We emphasize that the
qualitative behavior is unchanged, and that the Λ → 1 limit can be taken numerically to extract the “true” critical
couplings. Our analysis showing the effect of reducing Λ on the phase diagram is shown in Fig. S12. The critical
couplings for the lower transition are essentially already well-converged using Λ = 3. For the upper transition, J∗

I
increases slightly as Λ → 1, but remain well-behaved and finite in this limit.
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FIG. S11. NRG results for the AIM in the Hermitian limit, showing the impurity contribution to the entropy Simp(T ) vs
temperature T . Calculations done using discretization parameter Λ = 1.5, 2, 2.5, 3, showing extremely well converged results
that are largely insensitive to the specific value of Λ chosen. Here we use Ud = 0.3, ϵd = −0.15, V = 0.1 and Nk = 6000.

FIG. S12. (a) Companion of Fig. 1a of the main text, in which we show NH-NRG results for the SC/LM phase diagram of
the NH Kondo model in the (JR, JI) plane. Results obtained using Λ = 3 (lines) are here compared with those obtained using
Λ = 2.5 and Λ = 2 (points). The qualitative behavior and topology of the phase diagram is unchanged, but at larger |J | we
observe some drift in the extracted critical values J∗ separating SC (orange) from LM (blue). (b) Convergence of J∗

I to the
Λ → 1 limit for JR = 0.3. The critical values extrapolated to Λ = 1 are indicated with star points, and remain finite.

S.IX. IMPURITY MAGNETIZATION

In the main text, we present eigenvalue RG flow diagrams that illustrate the flow to stable fixed points. To further
confirm the presence of the phase transitions between the SC and LM (and LM to SC) phases that we observe, here
we present initial findings for the ground-state (zero “temperature”) impurity magnetization, calculated using the
Anders-Schiller basis [10] employed in full-density-matrix NRG [11]. This quantity has been studied in recent works
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FIG. S13. |⟨Sz
Imp⟩| for the NH Kondo model with the impurity subject to a small Zeeman field B along z, calculated in

the ground state using the full-density-matrix NRG method, established on the complete Anders-Schiller basis. NH-NRG
calculations performed for J = 0.4− iJI , Λ = 3, Nk = 600, and 100 iterations. Arrows indicate the phase boundaries found in
Fig. 1a of the main text.

on dissipative impurity systems [8, 12]. In the strong-coupling (SC) fixed-point regime, one expects the impurity
magnetization to be near zero, whereas in the local-moment (LM) regime, the impurity spin should polarize in
alignment with the on-site magnetic field.

In Fig. S13, we present results for the impurity magnetization in the NH Kondo model. We plot the magnitude
of the impurity magnetization as a function of the imaginary component of the impurity-bath coupling, JI , for fixed
JR = 0.4 and for various magnetic field strengths, B. At small but finite magnetic field, the magnetization begins close
to zero, indicating the system is initially in the SC regime, since the field cannot overcome the impurity-bath binding
energy, essentially set by the Kondo scale TK . At larger JI , the system undergoes a transition to the LM regime, with
the magnetization jumping abruptly to approximately 1

2 , indicating that the impurity spin is easily polarizable, and
essentially free. Upon further increasing JI , the system exhibits re-entrant Kondo behavior, and the magnetization
returns to approximately zero. We note that the magnetization exceeding 1

2 can likely be understood in analogy with
the impurity density per spin being larger than unity, as discussed in [13]. In the absence of any magnetic field, the
impurity magnetization remains zero regardless of fixed point regime, by symmetry. Such static physical quantities,
as well as dynamics, will be studied in detail in a follow-up paper.
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