The Integer Part Party Math Enrichment Class at University College Dublin, Feb 29th, 2020

Math Enrichment Class at University College Dublin, Feb 29th, 2020 Boštjan Kuzman, University of Ljubljana, Slovenia, *bostjan.kuzman(a)gmail.com*

For any real number $x \in \mathbb{R}$ we denote¹ by [x] the *integer part* of x and by [[x]] the *fractional part* of x. That is,

$$[x] = \max\{n \in \mathbb{Z} \mid n \le x\}$$
 and $x = [x] + [[x]]$.

Note that [x] is always an integer and [x] is a real number such that $0 \le [x] < 1$. Observe also, that

$$x - 1 < [x] \le x < [x] + 1.$$

Warm-up problems

Problem 1. Find integer and fractional parts of the following numbers:

14, 4.1, -2.6, 35/4, -22/3,
$$\sqrt{14}$$
, π , $\pi/2$ $\pi/3$

Problem 2. Draw graphs of f(x) = [x] and g(x) = [[x]] for $|x| \le 5$.

Problem 3. Compute $[1] + [\sqrt{2}] + [\sqrt{3}] + ... + [\sqrt{100}]$.

Problem 4. Find all $x \in \mathbb{R}$ such that $1 + [x] + [x^2] + [x^3] = [[x]]$.

Problem 5. Find all $x \in \mathbb{R}$ such that 3[x] = 5[[x]] + 4.

Problem 6. Find all $x \in \mathbb{R}$ such that $x^2 + [[x]]^2 = 11$.

Take out the integer trick

Problem 7. *Prove that* [x + n] = [x] + n *for all integers* $n \in \mathbb{Z}$.

Problem 8. Find all $x \in \mathbb{R}$ such that [2x+8] = 8x+2.

Problem 9. Find all $x \in \mathbb{R}$ such that $\left[\frac{2x+1}{3}\right] + \left[\frac{4x+5}{6}\right] = \frac{3x-1}{2}$.

Problem 10. *Find the smallest positive* $x \in \mathbb{R}$ *such that* $[x^2] - x[x] = 2019$.

Problem 11. *Find all integers* $n \in \mathbb{Z}$ *such that*

$$\left[\frac{n}{1!}\right] + \left[\frac{n}{2!}\right] + \left[\frac{n}{3!}\right] = 224.$$

Then find all $x \in \mathbb{R}$ *such that*

$$\left[\frac{x}{1!}\right] + \left[\frac{x}{2!}\right] + \left[\frac{x}{3!}\right] = 224 + \llbracket x \rrbracket.$$

¹Notation [x] was introduced by Gauss. In literature, notation [x] (floor) is sometimes used instead of [x], and [x] (ceiling) is used instead of [x]+1. Also, $\{x\}$ is sometimes used for [[x]].

De Polignac's formula² and trailing zeroes

Suppose $n \in \mathbb{N}$ is a positive integer and p a prime. The largest exponent r such that p^r divides n! is equal to

$$r = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \ldots = \sum_{k=1}^{\infty} \left[\frac{n}{p^k}\right].$$

Observe that there are only finitely many non-zero terms in this sum!

Problem 12. Use the formula to find the largest exponent of 3 such that 3^r divides 3000!. (*Hint:* Use [n/(ab)] = [[n/a]/b] for faster computation of terms $[3000/3^k]$.)

Problem 13. Observe that $\lfloor n/k \rfloor$ is the number of integers between 1 and n divisible by k. Use this to prove De Polignac's formula.

Problem 14. Write down 50! as a product of powers of primes.

Problem 15. Find the number t of trailing zeroes of 2020!, that is, the number of consecutive zero digits at the end of this number written in decimal notation.

Problem 16. Write down the last 50 digits of number 210! - 1.

Problem 17. Find all positive integers n such that n! has exactly 100 trailing zeroes.

Miscelaneous problems

Problem 18. Find all $n \in \mathbb{N}$ such that $[\sqrt[3]{1}] + [\sqrt[3]{2}] + [\sqrt[3]{3}] + ... + [\sqrt[3]{n}] = 2n$.

Problem 19. Compute $f(n) = [1] + [\sqrt{2}] + [\sqrt{3}] + ... + [\sqrt{n}]$ for n = 2020 and/or derive the general formula for $n \in \mathbb{N}$. (Hint: express the final result in terms of n and $N = [\sqrt{n}]$.)

Problem 20. For $x \in \mathbb{R}$ and $a, b \in \mathbb{N}$, prove

[x/a] = [[x]/a] and [x/(ab)] = [[x/a]/b].

(REMEBER BOTH FORMULAS! VERY USEFUL!)

Problem 21. Prove that $[\sqrt{n} + \sqrt{n+1}] = [\sqrt{4n+2}]$ for all $n \in \mathbb{N}$. (Ramanujan's puzzle)

Problem 22. Prove that $\left\lfloor \frac{n+1}{2} \right\rfloor + \left\lfloor \frac{n+2}{4} \right\rfloor + \left\lfloor \frac{n+4}{8} \right\rfloor + \ldots = n$ for all positive integers $n \in \mathbb{N}$.

Problem 23. Prove the following basic properties of []:

(a)
$$[x]+[y] \le [x+y] \le [x]+[y]+1$$
.

(b)
$$0 \le [2x] - 2[x] \le 1$$
.

(c)
$$[x] + [x + 1/2] = [2x]$$

(d) [x]+[-x]=0 if $x \in \mathbb{Z}$ and -1 otherwise.

²Also called Legendre's formula in the literature.

Partial solutions for The Integer Part Party

- 1. Caution for x < 0, for instance, [-2.6] = -3 and [[-2.6]] = 0.4.
- 2. Staircase and toothsaw.
- 3. $3 \cdot 1 + (8 3) \cdot 2 + (15 8) \cdot 3 + (24 15) \cdot 4 + \ldots + (80 63) \cdot 8 + (99 80) \cdot 9 + 10 = 625$.
- 4. Observe that the left hand side of the equation is integer, so [x] = 0. so x = -1.
- 5. Observe that 5[[x]] is integer, so [[x]] = a/5 for a = 0, 1, ..., 4. Hence 3[x] = a + 4 is an integer, so 3|a + 4 and hence a = 2, x = 12/5.
- 6. Observe $[[x]]^2 < 1$, so $x^2 > 10$. Thus, [x] = 3. Denote r = [[x]] and put x = 3 + r into original equation to obtain 2 solutions for r, but only $r \ge 0$, is good, so $x = 3 + r = \frac{3+\sqrt{13}}{2}$.
- 7. Since x = [x] + [[x]], we have $[x] + n \le [x] + [[x]] + n = x + n < [x] + n + 1$. As [x + n] is the largest integer not greater that x + n, we get [x + n] = [x] + n.
- 8. Observe that $8x \in \mathbb{Z}$, so x = y/8 for $y \in \mathbb{Z}$. Rewrite the equation to get [y/4] + 6 = y. Now put y = 4k + r, where r = 0, 1, 2, 3 and $k \in \mathbb{Z}$ (REMEMBER THIS TRICK!) and rewrite equation into 6 = 3k + r using that [r/4] = 0. Check possible r to get r = 0 or 3, compute k, y and finally x = 1 or 7/8.
- 9. The right side is integer, so x = (2y + 1)/3 for $y \in \mathbb{Z}$. Rewrite equation with y and reduce it to obtain [(4y+5)/9]+[4y/9+1/18]+1=y. Since the nominator is 9, put y = 9k + r, where r = 0, 1, ..., 8 (TRICK: if there were two different fraction nominators, we'd take their LCM instead of 9). Now check all possibilities to get 9 solutions: x = 3/3, 5/3, 7/3, ..., 19/3.
- 10. Write x = n + r where n = [x]. Rewrite and reduce to get $[2nr + r^2] nr = 2019$. So $nr \in \mathbb{Z}$ and hence also $2nr \in \mathbb{Z}$. Reduce to $[r^2] + nr = 2019$ and so nr = 2019. Then r = 2019/n < 1 and so n > 2019. Finally, $x = 2020 + \frac{2019}{2020}$.
- 11. Write n = 6k + r and rewrite and reduce using standard tricks to get n = 135 as the only solution. For the second part, observe the right hand side to find the unique *x*.
- 12. [3000/3] + [3000/9] + ... = [3000/3] + [1000/3] + [333/3] + ... = 1000 + 333 + 111 + 37 + 12 + 4 + 1 = 1498.
- 13. Let $k = \lfloor n/p \rfloor$ and write 1,2,3,..., p, p+2, ..., 2p, 2p+1, ..., kp, kp+1, ..., n to see why $\lfloor n/p \rfloor$ counts the numbers between 1 and n. But since some of these are also divisible by p^2 , p^3 etc., you have to add all these as well to get the exponent.
- 14. Use the formula for each prime p < 47 to obtain the exponents, say $50! = 2^{47} \cdot 3^{22} \cdot \ldots$
- 15. Observe that the number of trailing zeroes depends on the exponents of factors 2 and 5. As the later is smaller, the number of trailing zeroes is just that: $[2020/5] + [2020/5^2] + ... = 404 + 80 + 16 + 3 = 503$.
- 16. Think about the trailing zeroes first.

17. After a little trial and error, we obtain n = 405, 406, ..., 409. To reduce some of the trial end error, recall the geometric series formula $1 + q + q^2 + ... = \frac{1}{1-q}$ for |q| < 1. Using this, one can estimate

$$t = [n/5] + [n/5^2] + \ldots \le n/5 + n/5^2 + \ldots = \frac{n}{5}(1 + 1/5 + \ldots) = n/4,$$

so $t \le n/4$, giving the lower bound $n \ge 400$.

- 18. n = 33.
- 19. Observe that the sum is $(1 \cdot 3 + 2 \cdot 5 + ... + (N-1)(2(N-1)+1)) + [N^2+1] + [N^2+2] + ... + N$. Using the formulas for sum of k and sum of k^2 gives the general formula $\frac{N(6n-2N^2-3N+5)}{6}$.
- 20. Write x = [x] + [[x]] and [x] = kn + r with $k \in \mathbb{Z}$ and $r \in \{0, ..., n-1\}$. Then $\left[\frac{[x]}{n}\right] = \left[\frac{kn+r}{n}\right] = \left[k + \frac{r}{n}\right] = k + \left[\frac{r}{n}\right] = k$, since [r/n] = 0. Now

$$\left[\frac{x}{n}\right] = \left[\frac{kn+r+\llbracket x\rrbracket}{n}\right] = \left[k+\frac{r+\llbracket x\rrbracket}{n}\right] = k+\left[\frac{r+\llbracket x\rrbracket}{n}\right] = k,$$

since $0 \le r + [[x]] < r + 1 < n$. The second part now follows from the first one.

- 21. Hint: Show \leq and \geq separately.
- 22. Hint: Use induction for $n \ge 3$.
- 23. (a) [x + y] is integer and less or equal to $x + y = [x] + [y] + [[x]] + [[y]] \ge [x] + [y] \in \mathbb{Z}$. So $[x + y] \ge [x] + [y]$. On the other hand, [x + y] = [[x] + [y] + [[x]] + [[y]]] is also integer. It is the max integer less or equal $[x] + [y] + [[x]] + [[y]] < [x] + [y] + 2 \in \mathbb{Z}$, hence $[x + y] \le [x] + [y] + 1$.
 - (b) Use previous with x = y to get $[x] + [x] \le [x + x] \le [x] + [x] + 1$, hence $0 \le [2x] 2[x] \le 1$.

References

- [1] Irena Majcen, Smelo na Olimp, 303 naloge iz teorije števil, DMFA Slovenije.
- [2] www.brilliant.org.
- [3] www.cut-the-knot.org.