The Integer Part Party

Math Enrichment Class at University College Dublin, Feb 29th, 2020 Boštjan Kuzman, University of Ljubljana, Slovenia, *bostjan.kuzman(a)gmail.com*

For any real number $x \in \mathbb{R}$ we denote^{[1](#page-0-0)} by [x] the *integer part* of x and by [[x]] the *fractional part* of *x*. That is,

$$
[x]
$$
 = max{ $n \in \mathbb{Z} | n \le x$ } and $x = [x] + [[x]].$

Note that $[x]$ is always an integer and $[[x]]$ is a real number such that $0 \leq [[x]] < 1$. Observe also, that

$$
x-1 < [x] \le x < [x]+1.
$$

Warm-up problems

Problem 1. *Find integer and fractional parts of the following numbers:*

14, 4.1,
$$
-2.6
$$
, $35/4$, $-22/3$, $\sqrt{14}$, π , $\pi/2$ $\pi/3$

Problem 2. *Draw graphs of* $f(x) = [x]$ *and* $g(x) = [[x]]$ *for* $|x| \le 5$ *.*

Problem 3. *Compute* $[1] + [\sqrt{2}] + [\sqrt{3}] + ... + [\sqrt{100}]$ *.*

Problem 4. *Find all* $x \in \mathbb{R}$ *such that* $1 + [x] + [x^2] + [x^3] = [[x]]$ *.*

Problem 5. *Find all* $x \in \mathbb{R}$ *such that* $3[x] = 5[[x]] + 4$ *.*

Problem 6. *Find all* $x \in \mathbb{R}$ *such that* $x^2 + [x]^2 = 11$ *.*

Take out the integer **trick**

Problem 7. *Prove that* $[x + n] = [x] + n$ *for all integers* $n \in \mathbb{Z}$ *.*

Problem 8. *Find all* $x \in \mathbb{R}$ *such that* $[2x+8] = 8x+2$ *.*

Problem 9. *Find all* $x \in \mathbb{R}$ *such that* $\left[\frac{2x+1}{3}\right] + \left[\frac{4x+5}{6}\right] = \frac{3x-1}{2}$ $\frac{c-1}{2}$.

Problem 10. *Find the smallest positive* $x \in \mathbb{R}$ *such that* $[x^2] - x[x] = 2019$ *.*

Problem 11. *Find all integers* $n \in \mathbb{Z}$ *such that*

$$
\left[\frac{n}{1!}\right] + \left[\frac{n}{2!}\right] + \left[\frac{n}{3!}\right] = 224.
$$

Then find all $x \in \mathbb{R}$ *such that*

$$
\left[\frac{x}{1!}\right] + \left[\frac{x}{2!}\right] + \left[\frac{x}{3!}\right] = 224 + \left[\left[x\right]\right].
$$

¹Notation [*x*] was introduced by Gauss. In literature, notation [*x*] (floor) is sometimes used instead of [*x*], and $\lceil x \rceil$ (ceiling) is used instead of $\lceil x \rceil + 1$. Also, $\{x\}$ is sometimes used for $\lceil x \rceil$.

De Polignac's formula[2](#page-1-0) **and trailing zeroes**

Suppose $n \in \mathbb{N}$ is a positive integer and p a prime. The largest exponent r such that p' divides *n*! is equal to

$$
r = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \ldots = \sum_{k=1}^{\infty} \left[\frac{n}{p^k}\right].
$$

Observe that there are only finitely many non-zero terms in this sum!

Problem 12. *Use the formula to find the largest exponent of* 3 *such that* 3 *^r divides* 3000!*. (Hint: Use* $\lfloor n/(ab) \rfloor = \lfloor \lfloor n/a \rfloor / b \rfloor$ *for faster computation of terms* $\lfloor 3000/3^k \rfloor$ *.)*

Problem 13. *Observe that* [*n/k*] *is the number of integers between* 1 *and n divisible by k. Use this to prove De Polignac's formula.*

Problem 14. *Write down* 50! *as a product of powers of primes.*

Problem 15. *Find the number t of trailing zeroes of* 2020!*, that is, the number of consecutive zero digits at the end of this number written in decimal notation.*

Problem 16. *Write down the last 50 digits of number* 210!−1.

Problem 17. *Find all positive integers n such that n*! *has exactly 100 trailing zeroes.*

Miscelaneous problems

Problem 18. *Find all n* ∈ N *such that* [$\sqrt[3]{1}$ + $[\sqrt[3]{2}]$ + $[\sqrt[3]{3}]$ + ... + $[\sqrt[3]{n}]$ = 2*n*.

Problem 19. *Compute* $f(n) = [1] + [\sqrt{2}] + [\sqrt{3}] + ... + [\sqrt{n}]$ *for n* = 2020 *and/or derive the general formula for n* **∈ N**. (Hint: express the final result in terms of n and N = [\sqrt{n}].)

Problem 20. *For* $x \in \mathbb{R}$ *and* $a, b \in \mathbb{N}$ *, prove*

 $[x/a] = [[x]/a]$ *and* $[x/(ab)] = [[x/a]/b].$

(REMEBER BOTH FORMULAS! VERY USEFUL!)

Problem 21. *Prove that* [p \overline{n} + $\sqrt{n+1}$] = [$\sqrt{4n+2}$] *for all n* ∈ N. (Ramanujan's puzzle)

Problem 22. *Prove that* $\left[\frac{n+1}{2}\right] + \left[\frac{n+2}{4}\right] + \left[\frac{n+4}{8}\right] + \ldots = n$ for all positive integers $n \in \mathbb{N}$.

Problem 23. *Prove the following basic properties of* []:

(a)
$$
[x]+[y] \leq [x+y] \leq [x]+[y]+1
$$
.

(b)
$$
0 \le [2x] - 2[x] \le 1
$$
.

$$
(c) [x] + [x + 1/2] = [2x]
$$

(d) $[x] + [-x] = 0$ *if* $x \in \mathbb{Z}$ *and* −1 *otherwise.*

²Also called Legendre's formula in the literature.

Partial solutions for The Integer Part Party

- 1. Caution for *x <* 0, for instance, [−2.6] = −3 and [[−2.6]] = 0.4.
- 2. Staircase and toothsaw.
- 3. $3 \cdot 1 + (8-3) \cdot 2 + (15-8) \cdot 3 + (24-15) \cdot 4 + ... + (80-63) \cdot 8 + (99-80) \cdot 9 + 10 = 625.$
- 4. Observe that the left hand side of the equation is integer, so $||x|| = 0$. so $x = -1$.
- 5. Observe that $5||x||$ is integer, so $||x|| = a/5$ for $a = 0, 1, \ldots, 4$. Hence $3|x| = a + 4$ is an integer, so $3|a+4$ and hence $a = 2$, $x = 12/5$.
- 6. Observe $[[x]]^2 < 1$, so $x^2 > 10$. Thus, $[x] = 3$. Denote $r = [[x]]$ and put $x = 3 + r$ into original equation to obtain 2 solutions for *r*, but only $r \ge 0$, is good, so $x = 3 + r = 1$ $\frac{3+\sqrt{13}}{2}$ $\frac{\sqrt{13}}{2}$.
- 7. Since $x = [x] + [x]$, we have $[x] + n \leq [x] + [x] + n = x + n < [x] + n + 1$. As $[x + n]$ is the largest integer not greater that $x + n$, we get $[x + n] = [x] + n$.
- 8. Observe that $8x \in \mathbb{Z}$, so $x = \gamma/8$ for $\gamma \in \mathbb{Z}$. Rewrite the equation to get $[\gamma/4] + 6 = \gamma$. Now put $\gamma = 4k + r$, where $r = 0, 1, 2, 3$ and $k \in \mathbb{Z}$ (REMEMBER THIS TRICK!) and rewrite equation into $6 = 3k + r$ using that $[r/4] = 0$. Check possible *r* to get $r = 0$ or 3, compute *k*, *y* and finally $x = 1$ or 7/8.
- 9. The right side is integer, so $x = (2y + 1)/3$ for $y \in \mathbb{Z}$. Rewrite equation with y and reduce it to obtain $[(4y+5)/9]+[4y/9+1/18]+1=y$. Since the nominator is 9, put $y=$ $9k + r$, where $r = 0, 1, \ldots, 8$ (TRICK: if there were two different fraction nominators, we'd take their LCM instead of 9). Now check all possibilities to get 9 solutions: $x =$ 3*/*3, 5*/*3, 7*/*3,..., 19*/*3.
- 10. Write $x = n + r$ where $n = [x]$. Rewrite and reduce to get $[2nr + r^2] nr = 2019$. So *n r* ∈ \mathbb{Z} and hence also $2n r$ ∈ \mathbb{Z} . Reduce to $[r^2] + nr = 2019$ and so $nr = 2019$. Then $r = 2019/n < 1$ and so $n > 2019$. Finally, $x = 2020 + \frac{2019}{2020}$.
- 11. Write $n = 6k + r$ and rewrite and reduce using standard tricks to get $n = 135$ as the only solution. For the second part, observe the right hand side to find the unique *x* .
- 12. [3000*/*3] + [3000*/*9] + ... = [3000*/*3] + [1000*/*3] + [333*/*3] + ... = 1000 + 333 + 111 + 37 + $12 + 4 + 1 = 1498.$
- 13. Let $k = [n/p]$ and write 1, 2, 3, ..., $p, p+2, ..., 2p, 2p+1, ..., kp, kp+1, ..., n$ to see why $[n/p]$ counts the numbers between 1 and *n*. But since some of these are also divisible by p^2 , p^3 etc., you have to add all these as well to get the exponent.
- 14. Use the formula for each prime $p < 47$ to obtain the exponents, say $50! = 2^{47} \cdot 3^{22} \cdot \ldots$
- 15. Observe that the number of trailing zeroes depends on the exponents of factors 2 and 5. As the later is smaller, the number of trailing zeroes is just that: [2020*/*5] + $[2020/5^2] + ... = 404 + 80 + 16 + 3 = 503.$
- 16. Think about the trailing zeroes first.

17. After a little trial and error, we obtain $n = 405, 406, \ldots, 409$. To reduce some of the trial end error, recall the geometric series formula $1 + q + q^2 + ... = \frac{1}{1-q}$ for $|q| < 1$. Using this, one can estimate

$$
t = [n/5] + [n/52] + ... \le n/5 + n/52 + ... = \frac{n}{5}(1 + 1/5 + ...) = n/4,
$$

so $t \leq n/4$, giving the lower bound $n \geq 400$.

- 18. $n = 33$.
- 19. Observe that the sum is $(1 \cdot 3 + 2 \cdot 5 + ... + (N-1)(2(N-1)+1)) + [N^2 + 1] + [N^2 + 2] +$ \dots + *N*. Using the formulas for sum of *k* and sum of k^2 gives the general formula $\frac{N(6n-2N^2-3N+5)}{6}$.
- 20. Write $x = [x] + [\![x]\!]$ and $[x] = kn + r$ with $k \in \mathbb{Z}$ and $r \in \{0, ..., n-1\}$. Then $\left[\frac{[x]}{n}\right] =$ $\left[\frac{kn+r}{n}\right] = \left[k+\frac{r}{n}\right]$ $\left[\frac{r}{n}\right] = k + \left[\frac{r}{n}\right]$ $\left[\frac{r}{n}\right] = k$, since $[r/n] = 0$. Now

$$
\left[\frac{x}{n}\right] = \left[\frac{k n + r + \left[\!\left[x\right]\!\right]}{n}\right] = \left[k + \frac{r + \left[\!\left[x\right]\!\right]}{n}\right] = k + \left[\frac{r + \left[\!\left[x\right]\!\right]}{n}\right] = k,
$$

since $0 \le r + ||x|| < r + 1 < n$. The second part now follows from the first one.

- 21. Hint: Show \leq and \geq separately.
- 22. Hint: Use induction for $n > 3$.
- 23. (a) $[x + y]$ is integer and less or equal to $x + y = [x] + [y] + [x] + [y] \geq [x] + [y] \in \mathbb{Z}$. So $[x + y] \geq [x] + [y]$. On the other hand, $[x + y] = [[x] + [y] + [[x]] + [[y]]]$ is also integer. It is the max integer less or equal $[x] + [y] + [[x]] + [[y]] < [x] + [y] + 2 ∈ \mathbb{Z}$, hence $[x + y] ≤$ $[x] + [y] + 1.$
	- (b) Use previous with $x = y$ to get $[x] + [x] \leq [x + x] \leq [x] + [x] + 1$, hence $0 \leq [2x] 2[x] \le 1$.

References

- [1] Irena Majcen, Smelo na Olimp, 303 naloge iz teorije števil, DMFA Slovenije.
- [2] www.brilliant.org.
- [3] www.cut-the-knot.org.