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The Principle of Induction: Let a be an integer, and let P (n)

be a statement (or proposition) about n for each integer n ≥ a.

The principle of induction is a way of proving that P (n) is true for

all integers n ≥ a. It works in two steps:

(a) [Base case:] Prove that P (a) is true.

(b) [Inductive step:] Assume that P (k) is true for some integer

k ≥ a, and use this to prove that P (k + 1) is true.

Then we may conclude that P (n) is true for all integers n ≥ a.

This principle is very useful in problem solving, especially when we

observe a pattern and want to prove it.

The trick to using the Principle of Induction properly is to spot how

to use P (k) to prove P (k+1). Sometimes this must be done rather

ingeniously!
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Problem 1. Prove that for any integer n ≥ 1,

1 + 2 + 3 + · · · + n =
n(n + 1)

2
.

Solution. Let P (n) denote the proposition to be proved. First let’s

examine P (1): this states that

1 =
1(2)

2
= 1

which is correct.

Next, we assume that P (k) is true for some positive integer k, i.e.

1 + 2 + 3 + · · · + k =
k(k + 1)

2
.

and we want to use this to prove P (k + 1), i.e.

1 + 2 + 3 + · · · + (k + 1) =
(k + 1)(k + 2)

2
.

Taking the LHS and using P (k),

1 + 2 + 3 + · · · + (k + 1) = (1 + 2 + 3 + · · · + k) + (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1)

2
+

2(k + 1)

2

=
(k + 1)(k + 2)

2

and thus P (k + 1) is true. This completes the proof.
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Problem 2. Find a formula for the sum of the first n odd numbers.

Solution. Note that this time we are not told the formula that we

have to prove; we have to find it ourselves! Let’s try some small

numbers and see if a pattern emerges:

1 = 1; 1 + 3 = 4; 1 + 3 + 5 = 9;

1 + 3 + 5 + 7 = 16; 1 + 3 + 5 + 7 + 9 = 25;

We conjecture (guess) that the sum of the first n odd numbers is

equal to n2. Now let’s prove this proposition using the principle of

induction; call it P (n).

Our statement P (n) is that

1 + 3 + 5 + 7 + · · · + (2n− 1) = n2 .

First we prove the base case P (1), i.e.

1 = 12

This is certainly true. Now we assume that P (k) is true, i.e.

1 + 3 + 5 + 7 + · · · + (2k − 1) = k2 .

and consider P (k + 1):

1 + 3 + 5 + 7 + · · · + (2k + 1) = (k + 1)2 .
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Taking the LHS and using P (k),

1 + 3 + 5 + · · · + (2k + 1) = (1 + 3 + 5 + · · · + (2k − 1)) + (2k + 1)

= k2 + (2k + 1)

= (k + 1)2 .

and thus P (k + 1) is true. This completes the proof.

Remark This result can also be proved by dividing a square into

L-shaped regions.
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Problem 3: Finding Triangles 2n points are given in space,

where n ≥ 2. Altogether n2 + 1 line segments (‘edges’) are drawn

between these points. Show that there is at least one set of three

points which are joined pairwise by line segments (i.e. show that

there exists a triangle).

Solution. We will first argue that the proposition (let’s call it P (n))

holds for n = 2.

In the case n = 2, there are 2n = 4 points in space and n2 + 1 = 5

edges.

There are only 6 possible edges connecting 4 points, so in our con-

figuration of 5 edges, one of the 6 must be missing. Suppose the

missing edge connects points A and B. Denote the other two points

by C and D.

Then there is a triangle ACD (and indeed another one BCD).

This proves P (2).

Now let us suppose that the proposition P (n) is true for n = k, i.e.

that if 2k points are joined together by k2 + 1 edges, there must

exist a triangle. We seek to prove P (k + 1).

In the case of P (k+1) we consider 2(k+1) = 2k+2 points, which

are connected by (k + 1)2 + 1 = k2 + 2k + 2 edges.

Take a pair any pair of points A, B which are joined by an edge

.The remaining 2k points form a set which we will call S. We count
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the number of edges in S. There are two possibilities: there are

either at least k2 + 1 edges in S or there are at most k2.

In the first case, we are done. P (k + 1) follows, because P (k)

implies that S contains a triangle.

In the second case, we can count the edges as follows:

• There is one edge connecting A to B.

• There are at most k2 edges connecting pairs of points in S

• As there are k2 + 2k + 2 edges in total, there must therefore

be at least 2k+1 edges connecting points in S to A or to B.

Finally, we note that as the set S has 2k elements but 2k+1 edges

connecting S to A or to B, then there must be at least one point,

C ∈ S, connected both to A and to B.

Our triangle is then ABC.

This proves P (k + 1).

By induction, then P (n) holds for all integers n ≥ 2.

Remark. If we have 2n points and exactly n2 edges, it is possible

to avoid making a triangle. This is done by breaking the set of

points into two subsets X and Y which contain n points each, then

connecting every point in X to every point in Y .
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Problem 4: Fibonacci Numbers

The Fibonacci numbers are given by:

F1 = 1

F2 = 1

F3 = 2

F4 = 3

F5 = 5

F6 = 8

F7 = 13

F8 = 21

Fn+1 = Fn−1 + Fn

Prove that, for n = 0, 1, 2, . . .:

Fn =
1√
5

[(
1 +
√
5

2

)n

−

(
1−
√
5

2

)n]
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Solution. In this case, the inductive proof is more subtle. We

cannot show that P (k) implies P (k + 1).

We can show that P (k − 1) and P (k) together imply P (k + 1).

To start the induction, we then need to demonstrate P (n) for two

consecutive values of n. We do this for n = 0 and n = 1.

To verify P (0) we have:

1√
5

(1 +
√
5

2

)0

−

(
1−
√
5

2

)0
 =

1− 1√
5

= 0 = F0

To verify P (1), we have

1√
5

(1 +
√
5

2

)1

−

(
1−
√
5

2

)1
 =

√
5√
5
= 1 = F1

Now let us suppose P (k − 1) and P (k) both hold, so that:

Fk−1 =
1√
5

(1 +
√
5

2

)k−1

−

(
1−
√
5

2

)k−1


Fk =
1√
5

(1 +
√
5

2

)k

−

(
1−
√
5

2

)k




1111

Then we can derive an expression for Fk+1 which is:

Fk+1 = Fk−1 + Fk

=
1√
5

(1 +
√
5

2

)k−1

+

(
1 +
√
5

2

)k


− 1√
5

(1−
√
5

2

)k−1

+

(
1−
√
5

2

)k


=
1√
5

(
1 +
√
5

2

)k−1 [
1 +

1 +
√
5

2

]

− 1√
5

(
1−
√
5

2

)k−1 [
1 +

1−
√
5

2

]

=
1√
5

(1 +
√
5

2

)k+1

−

(
1−
√
5

2

)k+1


This is the inductive hypothesis we wished to prove.

In the last line, we used the identity:

1 +
1±
√
5

2
=

(
1±
√
5

2

)2
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Problem 5: Irrationality of
√
2

Let n be a positive integer. Prove that
√
2n is not an integer.

Proof: The proposition holds when n = 1, because 1 <
√
2 < 2.

Let us suppose inductively that the proposition holds for n = 1, 2, 3, . . . k−

1 for some positive integer k ≥ 2.

We want to show that
√
2k is not an integer.

Imagine a number line with the points 0, k,
√
2k and 2k marked on

it. As 1 <
√
2 < 2 then these points are in increasing sequence.

We focus on the intervals from k to
√
2k and from

√
2k to 2k.

If it happens that
√
2k is an integer, then these lengths are both

integers,

But comparing the interval lengths, we note that:

√
2(
√
2k − k) = 2k −

√
2k

This cannot happen by proposition P (
√
2k − k).

Therefore the remaining possibility is that
√
2k is not an integer -

which is the proposition P (k) we set out to prove.

This completes the inductive hypothesis. As the proposition holds

when n = 1, it therefore holds for all positive integers n.



1313

Problems 6 & 7: Quadratic Recursion Let {Sn : n = 1, 2, 3, ..}

be a sequence of integers, defined by:

S1 = 1

S2 = 1

S3 = 2

S4 = 5

S5 = 29

S6 = 866

Sn+1 = S2
n−1 + S2

n

Show that :

• (Problem 6) If n = 1, 2, 3, . . . then Sn is not divisible by 7.

• (Problem 7) Sn ≤ 2(2
n−2.7)
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Solution to Problem 6: Method 1 We look at the remainder

of Sn on division by 7. We notice a pattern of period 3 which we

then try to prove by induction. Our proposition is as follows:

Proposition P (n): Let n be a positive integer. Then:

• S3n+1 + 2 is divisible by 7

• S3n+2 − 1 is divisible by 7

• S3n+3 + 2 is divisible by 7

We show this in the case n = 1 by direct computation:

• S4 + 2 = 7

• S5 − 1 = 28 = 4× 7

• S6 + 2 = 868 = 124× 7

Thus, P (1) holds.

Let us suppose now that P (k − 1) holds for some k ≥ 2. We can

then compute, using the difference of two squares:

S3k+1 + 2 = (S3k + 2)(S3k − 2) + (S3k−1 − 1)(S3k−1 + 1) + 7

S3k+2 − 1 = (S3k+1 + 2)(S3k+1 − 2) + (S3k + 2)(S3k − 2) + 7

S3k+3 + 2 = (S3k+2 − 1)(S3k+2 + 1) + (S3k+1 + 2)(S3k+1 − 2) + 7

All the terms on the right hand side are multiples of 7, either by

P (k − 1) or by the previous bullets in the list.
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The left hand side is the subject of P (k). Thus, P (k) is proven from

P (k − 1) and so by induction P (n) holds for all n = 1, 2, 3, . . ..

We are not quite there, as we have only shown that Sn is not a

multiple of 7 for n ≥ 4.

We go back and check S1, S2 and S3 manually.

Finally, then, we have shown that Sn is not a multiple of 7 for any

positive n.
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Solution to Problem 6: Method 2

We can alternatively prove a simpler inductive hypothesis P (n): Sn

not a multiple of 7, with a more tedious inductive step.

Let us suppose we have proved P (k− 1) and P (k), so that neither

Sk−1 not Sk are multiples of 7. We can then tabulate Sk+1 modulo

7 for all combinations of Sk−1 and Sk modulo 7. The table is as

follows:

1 2 3 4 5 6

1 2 5 3 3 5 2

2 5 1 6 6 1 5

3 3 6 4 4 6 3

4 3 6 4 4 6 3

5 5 1 6 6 1 5

6 2 5 3 3 5 2

As there are no zeros in this table, by checking all the cases we have

shown that Sk+1 is not a multiple of 7.

Remark: If can be shown the corresponding result holds for primes

p = 3, 11, 19 and any prime for which p+ 1 is a multiple of 4, but

this involves more difficult maths than would be expected for IMO.
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Problem 7 Solution Remember the definition of the sequence:

S1 = 1

S2 = 1

Sn+1 = S2
n−1 + S2

n

We are required to prove the statement P (n) that Sn ≤ 2(2
n−2.7).

Abortive Proof Attempt: Suppose we try to prove this by in-

duction. So let us take the inductive hypothesis for n = k − 1 and

n = k:

Sk−1 ≤ 22
k−3.7

Sk ≤ 22
k−2.7

We square each side:

S2
k−1 ≤ 22

k−2.7

S2
k ≤ 22

k−1.7

Adding these together, we have:

S2
k−1 + S2

k ≤ 22
k−1.7

+ 22
k−2.7

What we wanted to prove was the stronger statement P (k + 1),

that

S2
k−1 + S2

k ≤ 22
k−1.7

But unfortunately the inductive step didn’t work.
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Second Attempt at Induction: We try instead to prove a stronger

statement P ′(n) which is Sn ≤ 2(2
n−2.7) − 1

2.

So let us take the new inductive hypothesis for n = k−1 and n = k:

Sk−1 ≤ 22
k−3.7 − 1

2

Sk ≤ 22
k−2.7 − 1

2

We square each side:

S2
k−1 ≤ 22

k−2.7 − 22
k−3.7

+
1

4

S2
k ≤ 22

k−1.7 − 22
k−2.7

+
1

4

Adding these together,

S2
k−1 + S2

k ≤ 22
k−1.7 − 22

k−3.7
+

1

2

≤ 22
k−1.7 − 1

2

Here, the inductive step works and we have proved P ′(k + 1).

It remains only to check P ′(n) for n = 1 and n = 2 to complete

the inductive statement.
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Here we hit another problem, that P ′(n) is false for some small n.

Specifically, we have:

n Sn 22
n−2.7

P (n) P ′(n)

1 1 1.24 TRUE FALSE

2 1 1.53 TRUE TRUE

3 2 2.35 TRUE FALSE

4 5 5.51 TRUE TRUE

5 29 30.37 TRUE TRUE

To put the pieces together, we use the following arguments:

• If n = 1, 2, 3, we see that P (n) holds by direct calculation.

• If n = 4, 5, we see that P ′(n) holds by direct calculation.

• If n ≥ 5, then P ′(n) holds by induction.

• As P ′(n) =⇒ P (n) we conclude that P (n) holds for all

positive integers n.
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Pólya’s Paradox:

A common way (in 1950, at least!) of expressing that something

is out of the ordinary is “That’s a horse of a different color!” The

famous mathematician George Pólya gave the following proof that

“all horses are the same color”, which works by the principle of

induction:

Proposition P (n): Suppose we have n horses. Then all n horses are

the same colour.

Base case: n = 1; if there is only one horse, there is only one

colour.

Inductive step: Assume that P (k) is true, i.e. that for any set

of k horses, there is only one color. Now look at any set of k + 1

horses; call this {H1, H2, H3, · · · , Hk, Hk+1}. Consider the sets

{H1, H2, H3, · · · , Hk} and {H2, H3, H4, ..., Hk+1}. Each is a set

of only k horses, therefore within each there is only one colour. But

the two sets overlap, so there must be only one colour among all

k + 1 horses.

The flaw is that when k = 2 the inductive step doesn’t work, because

the statement that “the two sets overlap” is false.
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IMO Problem, 1964. Seventeen scientists correspond with one

another. The correspondence is about three topics; any two scien-

tists write to each other about one topic only.

Prove that at least three scientists write to one another on the same

topic.


