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1. Euler’s Formula

Definition

We call a graph G(V,E) planar if it can be represented in the plane by
points and arcs in such a way that edges meet only at vertices, i.e.
they do not cross one another.

Example

K4 looks non-planar but is planar.

K4
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Example

K5 is non-planar.

 

 

Theorem

Euler Let a (finite non-empty connected) planar graph G have vertex,
edge and face sets V , E and F , respectively. Then

|V |+ |F | = |E|+ 1.
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In this graph, |V | = 6, |E| = 9, |F | = 4, hence

|V |+ |F | = |E|+ 1.
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Proof of Euler’s Formula:

We will prove this result by induction.

If there are no edges then the graph is a single vertex.
⇒ |V | = 1, |F | = 0, |E| = 0 and so the formula

|V |+ |F | = |E|+ 1

holds.

If there is 1 edge in the graph then it has 2 vertices, but no faces.
⇒ |V | = 2, |E| = 1, |F | = 0 and the formula

|V |+ |F | = |E|+ 1,

again, holds.

Let us assume that Euler’s formula is true for all (connected)
planar graphs with less than n edges.
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Consider now a connected planar graph G with vertices V , edges
E such that the number of edges |E| = n.

In such a graph there is at least one external edge e, with end
vertices x and y, say.

We now consider removing this edge e and examine the resulting
graphs that arise. There are two distinct cases:
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(1) If the removal of the edge e causes the graph to split into two
connected graphs G1 and G2. Let G1 have vertex set V1, edge set
E1 and faces F1. Similarly, let G2 have vertex set V2, edge set E2

and face set F2.

e y
x

Since we have removed an edge from G, both of the graphs G1 and
G2 have at most n− 1 edges. From our assumption, we know that
|V1|+ |F1| = |E1|+ 1 and |V2|+ |F2| = |E2|+ 1. Hence

|V |+ |F | = |V1|+ |F1|+ |V2|+ |F2|
= |E1|+ 1 + |E2|+ 1

= (|E1|+ 1 + |E2|) + 1 = |E|+ 1.
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(2) If, when we remove the edge e from the planar graph G, we still
have a connected planar graph, then call the resulting graph H.
Let the vertex/edge and face sets of H be V3, E3 and F3,
respectively.

ex y
Since the graph has
fewer than n edges,
we have that
|V3|+ |F3| = |E3|+ 1.
The graph H still
has the same vertex
set as G, hence
|V | = |V3|.

We have removed only one edge, so it is clear that |E3| = |E| − 1.
The removal of this edge has caused one face/region to disappear,
thus |F3| = |F | − 1.
Combining these we find that

|V |+ |F | = |V3|+ |F3|+ 1 = |E3|+ 1 + 1 = (|E3|+ 1) + 1 = |E|+ 1.
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This has shown us that it must be true for all connected planar graphs
with n edges. By the principle of (strong) induction, the result is true
for all connected planar graphs. �

Bondy & Murty, Graph Theory with Applications.
Proves Euler’s Formula Using induction on faces.

Twenty proofs of Euler’s formula:
http://www.ics.uci.edu/~eppstein/junkyard/euler/
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Some related problems:

Question (Turkish Math. Olympiad 1993)

Some towns are connected to each other by some roads with at most
one road between any pair of towns. Let v denote the number of towns,
and e the number of roads. Show that

a) if e < v − 1, then there are at least two towns such that it
is impossible to travel from one to the other,

b) if 2e > (v − 1)(v − 2), then travelling between any pair of
towns is possible.

Question (7th Irish Mathematical Olympiad)

If a square is partitioned into n convex polygons, determine the
maximum number of edges present in the resulting figure. [Hint: By
Euler’s theorem, if the square is partitioned into n polygons, then
v − e + n = 1 where v is the number of vertices and e is the number of
edges in the resulting figure]
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2. The Pigeonhole Principle

Pigeonhole Principle I: If n > m pigeons are put into m holes, then
some hole will contain more than 1 pigeon.

Example

If 11 letters are to be distributed into 10 letter-boxes, then one letter
box contains at least two letters.
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Pigeonhole Principle II: If n > m pigeons are put into m holes,
then some hole will contain at least dn/me pigeons.

Example

In Dublin, there are at least seven people with exactly the same
number of hairs on their heads. The population of Dublin is 1,800,001.
An upper bound for the number of hairs on a human head is 300,000
(the average being 100,000). In this situation, we have 300,000 boxes
(i.e. pigeonholes) into which we place the names of the 1,800,001
people according to how many hairs they have. Therefore, there must
be one box containing at least d1800001/300000e = 7 names.
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Problem

Suppose we have two columns and ten rows. We place the numbers
from the set {1, 2, . . . , 20} into the twenty boxes such that

there is one odd and one even number in every row,

the first column contains number from the set

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

the second column contains numbers from the set

{11, 12, 13, 14, 15, 16, 17, 18, 19, 20}.

Show that there are two rows with the exact same sum.
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Example

5 12

2 13

3 14

4 15

1 18

6 17

7 16

8 19

9 20

10 11
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Form the array of all possibilities:

1 2 3 4 5 6 7 8 9 10

11 13 15 17 19 21

12 13 15 17 19 21

13 15 17 19 21 23

14 15 17 19 21 23

15 17 19 21 23 25

16 17 19 21 23 25

17 19 21 23 25 27

18 19 21 23 25 27

19 21 23 25 27 29

20 21 23 25 27 29

Notice that regardless of the way the numbers are placed, the sum in
each row can be one of only nine numbers: 13, 15, . . . , 29.

Since there are ten rows, there will be ten sums, and by the pigeonhole
principle at least two sums must be the same. �

M. Dukes UCD April 7, 2018 15 / 40



Nine people are seated in a row of 12 chairs. Show there are three
consecutive chairs which are filled.

Consider a particular instance of this:

Since there are 9 people seated in 12 chairs, 3 chairs are always empty.
Let us condition on the empty chairs:

The general situation is

B C De1 e2 e3A

where A, B, C, and D represent rows of seats with people sitting beside
one-another.
All 9 people must be in one of A, B, C, and D, so by the pigeonhole
principle one of these ‘boxes’ contains at least d9/4e = 3 people.

That is, in any such configuration there are at least three consecutive
chairs which are filled. �.
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Six integers are chosen from the set A := {1, 2, 3, . . . , 10}. Show that
some two of them will have an odd sum.

Working ‘backwards’, notice the sum of two integers if odd ⇔ one is
odd and one is even:

a b a+ b

odd odd even
odd even odd
even odd odd
even even even

So it will be sufficient to show that among any six numbers chosen
from A, at least one odd and one even integer appears:

This is clear since there are precisely 5 odd and 5 even numbers in the
set A. When choosing six there must be at least one of each. (This
follows by the P-H principle since there are 4 numbers not chosen, and
conditioning on these there are 5 groups into which to place 6 numbers,
⇒ one box contains at least 2 numbers ⇒ two consecutive numbers ⇒
1 odd & 1 even.) �.
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55 distinct integers are selected from the set {1, 2, 3, 4, . . . , 100}. Show
that there must be some pair of these which differ by 9.

Consider the partition of the integers from this set into classes which
contain numbers which differ by 9.

Class Numbers #

(a) 1 – 10 – 19 – 28 – 37 – 46 – 55 – 64 – 73 – 82 – 91 – 100 12
(b) 2 – 11 – 20 – 29 – 38 – 47 – 56 – 65 – 74 – 83 – 92 11
(c) 3 – 12 – 21 – 30 – 39 – 48 – 57 – 66 – 75 – 84 – 93 11
(d) 4 – 13 – 22 – 31 – 40 – 49 – 58 – 67 – 76 – 85 – 94 11
(e) 5 – 14 – 23 – 32 – 41 – 50 – 59 – 68 – 77 – 86 – 95 11
(f) 6 – 15 – 24 – 33 – 42 – 51 – 60 – 69 – 78 – 87 – 96 11
(g) 7 – 16 – 25 – 34 – 43 – 52 – 61 – 70 – 79 – 88 – 97 11
(h) 8 – 17 – 26 – 35 – 44 – 53 – 62 – 71 – 80 – 89 – 98 11
(i) 9 – 18 – 27 – 36 – 45 – 54 – 63 – 72 – 81 – 90 – 99 11

If we choose 55 numbers from {1, . . . , 100}, by the P-H principle, one of
the 9 classes must contain at least d55/9e = 7 of these numbers.
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There are 2 cases to consider:

(I) if the class is (a), and

(II) if it is one of the classes (b)–(i).

For (I), if at least 7 of these numbers are in (a), then by using the same
application of the P-H principle as we did in the chairs problem, it is
easy to see there must be two adjacent entries ⇒ two of the 55
numbers differ by exactly nine.

For (II), the same technique is used, and we see that if 7 numbers are
chosen from 11 (e.g. case(f) ), then there must be two adjacent entries.
�.
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Theorem

In a group of six people, there are three people who mutually know each
other, or mutually do not know each other.

Proof: We first assume that knowing and not knowing are
commutative concepts.

Let the six people be called A, B, C, D, E and F .

Associate a graph with vertices’s A,B,C,D,E, F with this situation in
which two people are connected by a blue line if they mutually know
one another and a red one if they do not.
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For example here is one such possibility:
A B

C

E D

F

In light of this graph-theoretic set-up, we
want to prove that for any colouring of the
edges (red or blue) of this graph, there will
always be at least one red or blue triangle.

Consider person (vertex) A.

5 edges extend from this vertex and each
of the edges must be coloured either red or
blue.

By the pigeonhole principle, since we have
5 lines and 2 colours from which to colour
each of these lines, there must be at least
d5/2e = d2.5e = 3 lines of the same colour.

A B

C

E D

F
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Without loss of generality, let us
assume these lines are blue and the
corresponding end points are C, D
and F .

A B

C

E D

F

Removing the points B and E we see that we still must colour each of
the three edges CF , CD and DF either red or blue.

A

C

D

F
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If we colour any of these edges blue then we will have completed a blue
triangle.

Since we do not wish to do this, none of them can be blue and so must
be red.

A

C

D

F

However, this gives us a red triangle between the points C, D, and F .
So it is impossible to colour the edges in such a way that no red or blue
triangle is formed.

Thus, in any group of six people, there exist three that either mutually
know, or don’t know, one another. �
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Problem (Sixth IMO, 1964, Problem 3)

Seventeen people correspond by mail with one another – each one with
all the rest. In their letters only three topics are discussed. Each pair
of correspondents deals with only one of these topics. Prove that there
are at least three people who write to each other about the same topic.

Problem

Each square of a 3× 7 board is coloured black or white. Prove that for
any such colouring, the board contains a rectangle whose 4 corners are
all of the same colour.
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3. The Josephus Problem

Setup:

41 people standing in a circle waiting to be executed, every third
person gets executed by the third person ahead (and still alive!) in
a clockwise direction, the last killer is then killed by the same rule
etc.

Who is the last man standing?

We consider the case of n
men (vertices) around a
circle with vertices
eliminated in the order
2, 4, . . .

1
 

 

 

 

2
3

4

5

n−1
n
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So for the n = 5 case we find ....

1

2

34
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So for the n = 5 case we find ....
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So for the n = 5 case we find ....

1

3
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So for the n = 5 case we find ....

3

5

 

 

 

 

M. Dukes UCD April 7, 2018 26 / 40



So for the n = 5 case we find ....

3
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So for the n = 5 case we find .... that vertex number 3 remains.

What is the answer for general n ?
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For the general problem problem on the circle with n vertices, where
every second vertex is removed in a clockwise direction beginning at 2,
let us denote the number remaining by J(n).

1
 

 

 

 

2
3

4

5

n−1
n

We want a formula/expression for J(n)
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How do we find such a formula? Maybe try ...

Calculating the first few values and see if there’s a pattern.

Finding some kind of recursion.

Removing a vertex and see how that changes things.

Look at what happens when n is odd and n is even.

The first few values: Examining the cases for n small, one finds:

n 1 2 3 4 5 6

J(n) 1 1 3 1 3 5

There could be some sort of pattern but the answer doesn’t seem
obvious.
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Looking for a recursion:
Consider the cases when n is odd and even separately.

If n = 2m, then after going once around the circle, we find that all
the even numbers are gone.

1
 

 

 

 

3

5

−12m

2m−3

Who is next to go?
Answer: Vertex 3.
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Notice that if we relabel to
the purple numbers, it is the
same as beginning the
problem again at 2 and
having m vertices.

How do we go from the
purple labels to the original
labels??

1
 

 

 

 

3

5

−12m

2m−3

1

2

3

m−1

m

original = 2× (purple)− 1

So if J(m) is the last vertex remaining of the purple numbers, then the
corresponding original number is simply 2J(m)− 1.

J(2m) = 2J(m)− 1
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What about n = 2m + 1?

This is almost the same as the n is even case.

Go once around the circle to find 2, 4, . . . , 2n, 1 have been removed
and the next vertex which is due to be removed is 5.

2m+1

2m−1

 

 

 

 

3

1

5
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Inserting new labels we see this to be now equivalent to the problem on
m vertices.

2m+1

2m−1

 

 

 

 

3

1

5

1

2

m

m−1

3

How do we go from the purple labels to the original labels in this case??
original = 2× (purple) + 1

This gives

J(2m + 1) = 2J(m) + 1
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We now have a method for computing the numbers J(n) without
arguing our way around (and in) circles:

J(1) = 1,

J(2m) = 2J(m)− 1, for m ≥ 1,

J(2m + 1) = 2J(m) + 1, for m ≥ 1.

Can we find a nicer formula?
Compute the values:-

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

J(n) 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1 3 5 7 9

↓

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

J(n) 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1 3 5 7 9
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From this, we may conjecture:-

If n = 2m + k where 0 ≤ k < 2m,
then J(n) is the (k + 1)th odd number,

i.e.

J(n) = 2k + 1.

Q1: Can you find a nice interpretation on J(n) in terms of the binary
representation of n?

Q2: What about when every third person is eliminated, beginning with
person numbered 3? Does the same analysis provide a solution?

Question

Prove that
(2m)!(2n)!

m!n!(m + n)!
is an integer for all integers m,n ≥ 0.
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4. Permutations and their subsequences

Theorem (Erdös-Szekeres theorem)

Let a1, a2, . . . , an2+1 be a permutation of the set {1, 2, . . . , n2 + 1}.
There exists a subsequence of this sequence

ai(1), ai(2), . . . , ai(n), ai(n+1)

which is either increasing ai(1) < ai(2) < · · · < ai(n) < ai(n+1), or
decreasing ai(1) > ai(2) > · · · > ai(n) > ai(n+1).

Example

Consider the sequence of 10 = 32 + 1 numbers;

7, 3, 8, 1, 2, 6, 4, 5, 10, 9.

In this case a1 = 7, a2 = 3, . . ., a10 = 9. The above claim says there is
a subsequence of length 4 (= 3 + 1) in this sequence which is either
increasing or decreasing. Evidenced by 1, 2, 4, 9 which is a4, a5, a7, a10.
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Proof.

For each of the numbers aj with 1 ≤ j ≤ n2 + 1, let us associate a
number tj which tells us the length of the longest increasing
subsequence starting at position j. In the example just given,

j 1 2 3 4 5 6 7 8 9 10

aj 7 3 8 1 2 6 4 5 10 9
tj 3 4 2 5 4 2 3 2 1 1

If there is some value j, 1 ≤ j ≤ n2 + 1, such that tj ≥ n + 1 then we
are done since this means there is an increasing subsequence beginning
with the value aj in our sequence.

[In the example, since t5 = 4(= n + 1) we can see the existence of an
increasing subsequence of length 4]
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Proof cont’d

Assume this is not the case; so tj ≤ n for all 1 ≤ j ≤ n2 + 1.
For each of the n2 + 1 numbers in the sequence, we have tj ≤ n.
Consider n boxes labelled B1, . . . , Bn into which we place the elements
of our sequence a1, a2, . . . an2+1 according to the following rule

Place ak in box Bj if tk = j.

i.e., put an element from the sequence into the box whose label gives
the longest increasing subsequence beginning with that element.
We have a total of n2 + 1 numbers to place into n boxes.

By the P-H principle, at least one of these boxes must contain⌈
n2 + 1

n

⌉
= n + 1 numbers.

Let this box have label s.
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Proof cont’d

Then there exists a subsequence ai(1), ai(2), . . . , ai(n), ai(n+1) such that

ti(1) = ti(2) = . . . = ti(n) = ti(n+1) = s.

Final step: Consider the subsequence in question now:

ai(1), ai(2), . . . , ai(n), ai(n+1).

If ai(1) < ai(2) then, since there is an increasing sequence of length s
beginning with ai(2), and since ai(1) < ai(2), an increasing sequence of
length (at least) s + 1 begins at ai(1).

In our notation, this means that ti(1) ≥ s + 1.

But this is a contradiction since ti(1) = s so we must have ai(1) > ai(2).

This exact same argument shows that ai(2) > ai(3), ai(3) > ai(4), etc.
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Proof cont’d

Putting these inequalities together yields

ai(1) > ai(2) > · · · > ai(n+1)

which shows the existence of a length n + 1 decreasing subsequence. �

Note: This result does not hold for subsequences of length n + 2.

Exercise: Find a permutation of {1, 2, . . . , 10} which contains no
increasing or decreasing subsequence of length 5.
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Question

Prove that the set S = {1, 2, . . . , 1989} can be expressed as the disjoint
union of subsets Ai (for i = 1, 2, . . . , 117) such that

(i) each Ai contains 17 elements

(ii) the sum of the elements in each Ai is the same.

(A = A1 ∪A2 ∪ · · · ∪A117 with Ai ∩Aj = ∅ for all i, j with i 6= j)
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