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The Arithmetic Mean – Geometric Mean (AM-GM) Ineq.

For any two positive real numbers a and b, we have

a + b

2
≥
√
ab

with equality if and only if a = b.

More generally, for n positive real numbers x1, x2, . . . , xn we have

x1 + x2 + · · · + xn
n

≥ n
√
x1x2 · · · xn

with equality if and only if all of the numbers x1, x2, . . . , xn are

equal.
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Example 1. Show that for all positive integers n ≥ 2 we have

n! <

(
n + 1

2

)n

.

Solution. The AM-GM inequality gives

1 + 2 + · · · + n > n
n
√
1 · 2 · · ·n = n

n
√
n!.

Therefore
n(n + 1)

2
= 1 + 2 + · · · + n > n

n
√
n!.

Cancelling n on both sides gives

n + 1

2
>

n
√
n!

and taking n-th powers gives the required inequality.
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Example 2. Let a, b, c > 0 be such that

(1 + a)(1 + b)(1 + c) = 8.

Prove that abc ≤ 1.

Solution. Assume that abc > 1. By AM-GM inequality we have

1 + a ≥ 2
√
a

1 + b ≥ 2
√
b

1 + c ≥ 2
√
c

We now multiply side by side the above inequalities.

Using abc > 1 we find

(1 + a)(1 + b)(1 + c) ≥ 8
√
abc > 8,

contradiction. Hence, abc ≤ 1.
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Example 3. (a) Prove that for any positive numbers x, y we have

x3 + y3 ≥ x2y + xy2.

(b) Prove that for any real numbers 0 ≤ x, y, z ≤ 1 we have

3 + x3 + y3 + z3 ≥ x2 + y2 + z2 + x + y + z.

Solution. (a) We have

x3 + y3 − (x2y + xy2) = (x + y)(x− y)2 ≥ 0.

(b) Using the above inequality we have

2+x3+y3 ≥ 2+x2y+xy2 = (1+x2y)+(1+xy2) ≥ (x2+y)+(y2+x).

(*) students required details in order to prove that

(1 + x2y) + (1 + xy2) ≥ (x2 + y) + (y2 + x)

Similarly we have

2 + y3 + z3 ≥ z2 + y + y2 + z

2 + z3 + x3 ≥ z2 + x + x2 + z.

Adding the above three inequalities we obtain the conclusion.
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Example 4. (a) Prove that for any positive real numbers a, b we

have
a + b

2
≥ 2

1
a +

1
b

.

(b) Prove that for positive real numbers x, y, z,

1

x + y
+

1

y + z
+

1

z + x
≤ 1

2

(
1

x
+

1

y
+

1

z

)
.

Solution. (a) The inequality is equivalent to

a + b

2
≥ 2ab

a + b

or even (a+ b)2 ≥ 4ab which can be written (a− b)2 ≥ 0. We have

equality if and only if a = b.

(b) We apply the above inequality for a = 1
x and b = 1

y . We have

1

2

(
1

x
+

1

y

)
≥ 2

x + y
. (1)

Similarly we obtain

1

2

(
1

y
+

1

z

)
≥ 2

y + z
, (2)

1

2

(
1

z
+

1

x

)
≥ 2

z + x
. (3)

Adding up the inequalities (1) (2) and (3) we find

1

x
+

1

y
+

1

z
≥ 2

x + y
+

2

y + z
+

2

z + x

which proves our inequality.
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Example 5. Prove that for any positive real numbers a, b and c

we have
2a + b

b + 2c
+

2b + c

c + 2a
+

2c + a

a + 2b
≥ 3.

Solution. Let

b + 2c = x (1)

c + 2a = y (2)

a + 2b = z (3)

Adding the above equalities we find

2a + 2b + 2c =
2(x + y + z)

3
(4)

Now, from (1) and (4) we find

2a + b =
2y + 2z − x

3

and similarly,

2b + c =
2x + 2z − y

3
and 2c + a =

2x + 2y − z

3
.

Thus, in the new variables x, y, z our initial inequality reads

1

3

{
2y + 2z − x

x
+

2x + 2z − y

y
+

2x + 2y − z

z

}
≥ 3,

or even

2
(x
y
+

y

x

)
+ 2
(y
z
+

z

y

)
+ 2
(x
z
+

z

x

)
≥ 12. (5)
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By AM-GM inequality we have

x

y
+

y

x
≥ 2,

y

z
+

z

y
≥ 2,

x

z
+

z

x
≥ 2.

Adding the above inequalities we find (5) which proves our initial

inequality.
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Example 6. The non-zero real numbers a, b, c, d satisfy the equal-

ities

a + b + c + d = 0,
1

a
+

1

b
+

1

c
+

1

d
+

1

abcd
= 0.

Find, with proof, all possible values of the product (ab− cd)(c+d).

Solution. From

1

a
+

1

b
+

1

c
+

1

d
+

1

abcd
= 0

we deduce that

bcd + cda + dab + abc = −1 .

So,

−1 = bcd + cda + dab + abc = cd(b + a) + ab(c + d) .

Using the fact that a + b = −(c + d) yields

−1 = (c + d)(ab− cd)

and so (ab− cd)(c + d) = −1 for all admissible values of a, b, c, d.
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Example 7. Let a, b, c > 0 be such that abc = 1. Prove that

1 + ab

1 + a
+

1 + bc

1 + b
+

1 + ca

1 + c
≥ 3.

Solution. Observe first that

1 + ab

1 + a
=

abc + ab

1 + a
= ab

1 + c

1 + a
.

Similarly,

1 + bc

1 + b
= bc

1 + a

1 + b
,

1 + ca

1 + c
= ca

1 + b

1 + c
.

By AM-GM inequality we now obtain

1 + ab

1 + a
+

1 + bc

1 + b
+

1 + ca

1 + c
= ab

1 + c

1 + a
+ bc

1 + a

1 + b
+ ca

1 + b

1 + c

≥ 3
3

√
ab

1 + c

1 + a
· bc1 + a

1 + b
· ca1 + b

1 + c
= 3 3
√
(abc)2 = 3.
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Example 8. Prove that for any a, b, c > 0 we have

a3

b
+

b3

c
+

c3

a
≥ ab + bc + ca.

Solution. By AM-GM inequality we have

a3

b
+

b3

c
+ bc ≥ 3

3

√
a3

b
· b

3

c
· (bc) = 3ab.

Similarly,

b3

c
+

c3

a
+ ca ≥ 3

3

√
b3

c
· c

3

a
· (ca) = 3bc

and
c3

a
+

a3

b
+ ab ≥ 3

3

√
c3

a
· a

3

b
· (ab) = 3ca.

Adding the above inequalities, we obtain

2

(
a3

b
+

b3

c
+

c3

a

)
+ ab + bc + ca ≥ 3(ab + bc + ca)

which proves our original inequality.
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Example 9. Prove that if a and b are positive real numbers,

3

√
a

b
+

3

√
b

a
≤ 3

√
2 (a + b)

(
1

a
+

1

b

)
.

Solution. Recall that

(x + y)3 = x3 + 3x2y + 3xy2 + y3.

Cubing both sides yields

a

b
+3

(
3

√
a

b

)2
(

3

√
b

a

)
+3

(
3

√
b

a

)2(
3

√
a

b

)
+
b

a
≤ 2

(
2 +

a

b
+

b

a

)
.

Simplifying this yields

(1) 3 3

√
a

b
+ 3

3

√
b

a
≤ 4 +

a

b
+

b

a
.

Now by the AM-GM inequality,

1 + 1 +
a

b
≥ 3 3

√
a

b

and

1 + 1 +
b

a
≥ 3

3

√
b

a

with equality in both cases if and only if a = b. Adding these two

inequalities together yields the required inequality (1).
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Example 10. The positive real numbers a, b, c satisfy a+b+c = 1.

Prove that (
1

a
− 1

)(
1

b
− 1

)(
1

c
− 1

)
≥ 8.

Solution. Observe first that

1

a
− 1 =

1− a

a
=

(a + b + c)− a

a
=

b + c

a
≥ 2
√
bc

a
.

Similarly,

1

b
− 1 =

1− b

b
=

(a + b + c)− b

b
=

c + a

b
≥ 2
√
ca

b
,

1

c
− 1 =

1− c

c
=

(a + b + c)− c

c
=

a + b

c
≥ 2
√
ab

c
.

We multiply the above inequalitis and obtain(
1

a
− 1

)(
1

b
− 1

)(
1

c
− 1

)
≥ 8

√
(abc)2

abc
= 8.
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Example 11. The positive real numbers a, b, c satisfy a+b+c = 1.

Prove that (
1

a
+ 1

)(
1

b
+ 1

)(
1

c
+ 1

)
≥ 43.

Solution. First, by AM-GM inequality we find

1 = a + b + c ≥ 3
3
√
abc

so abc ≤ 127. Now, we compute(
1

a
+ 1

)(
1

b
+ 1

)(
1

c
+ 1

)
= 1 +

(
1

a
+

1

b
+

1

c

)
+

(
1

ab
+

1

bc
+

1

ca

)
+

1

abc

≥ 1 + 3
3

√
1

abc
+ 3 3

√
1

(abc)2
+

1

abc

≥ 1 + 3
3
√
27 + 3

3
√
272 + 27

= 64 = 43.
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Example 12. The positive real numbers a, b, c satisfy the double

inequality

b2

a + b
+

c2

b + c
+

a2

c + a
≥ c2

a + b
+

a2

b + c
+

b2

c + a
≥ a2

a + b
+

b2

b + c
+

c2

c + a
.

Prove that a = b = c.

Solution. Looking at the first and the last term of our inequality,

we observe that they are equal. Indeed,( b2

a + b
+

c2

b + c
+

a2

c + a

)
−
( a2

a + b
+

b2

b + c
+

c2

c + a

)
=

b2 − a2

a + b
+

c2 − b2

b + c
+

a2 − c2

c + a

= (b− a) + (c− b) + (a− c) = 0.

It follows that

b2

a + b
+

c2

b + c
+

a2

c + a
=

c2

a + b
+

a2

b + c
+

b2

c + a

so
b2 − c2

a + b
+

c2 − a2

b + c
+

a2 − b2

c + a
= 0.

Direct calculations show that this implies

a2b2 + b2c2 + c2a2 − a4 − b4 − c4 = 0

which can be rewritten into (a2− b2)2+(b2− c2)2+(c2−a2)2 = 0.

This easily yields a = b = c.


