
UCD Mathematics Enrichment Programme

Solutions to Selection Test, 14 February 2015

1. (a) Which is the larger number: A = 200! or B = 100200? Justify your answer.

(b) Which is the larger number: A = 2000! or B = 1002000? Justify your answer.

Solution:

(a) B > A:

We have

A

B
=

200

100
· 199
100

· · · 100
100

· 99

100
· · · 1

100

=
200

100

(

199

100
· 1

100

)

·
(

198

100
· 2

100

)

· · ·
(

101

100
· 99

100

)

This expression is < 1 since the product of the first three terms is less than 1 and each of the
products

(

100 + k

100
· 100− k

100

)

=

(

1 +
k

100

)

·
(

1− k

100

)

= 1− k2

1002

is less than 1. So A/B < 1 as claimed.

(b) A > B:

The product A/B is the product of all terms n/100 as n goes from 1 to 2000. This product
contains the 99 products of three terms

(

k

100
· 2000− k

100
· 1000− k

100

)

as k goes from 1 to 99. Each of these terms is > 1 since each is greater than

(

1

100
· 1900
100

· 900
100

)

=
19 · 9 · 1002

1003
> 1.

All remaining factors in the product A/B are of the form n/100 with n ≥ 100. Thus A/B > 1.

2. Show that for all positive integers n ≥ 2 we have

n! <

(

n+ 1

2

)n

.

Solution: The AM-GM inequality gives

1 + 2 + · · ·+ n > n
n

√
1 · 2 · · ·n = n

n

√
n!.

Therefore
n(n+ 1)

2
= 1 + 2 + · · ·+ n > n

n

√
n!.

Cancelling n on both sides gives
n+ 1

2
>

n

√
n!

and taking n-th powers gives the required inequality.
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3. In triangle ABC we denote by A′, B′, C ′ the midpoints of sides BC, CA and AB respectively. We
extend AA′ beyond A′ with A′M = AA′. We extend BB′ beyond B′ with B′N = BB′ and extend
CC ′ beyond C ′ with C ′P = CC ′. Denote by G1, G2 and G3 the centroids of triangles MBC, NAC
and PAB. Prove that triangles ABC and G1G2G3 have the same area.

Solution: We note first that ABMC is a parallelogram since its diagonals AM and BC have the
same midpoint A′. Similarly ABCN and ACBP are parallelograms. This yields AN ||BC and
AP ||BC so A,N, P are collinear. Similarly B,M,P and C,M,N are collinear. It follows that
A,B,C are the midpoints of NP , MP and MN respectively. Denote by G the centroid of ABC.
Using the property of the centroid that it is located at 2/3 of the vertex and 1/3 of the base, we
deduce AG = GG1 = G1M . Thus, G1 is the midpoint of GM . Similarly, G2 is the midpoint of
GN and G3 is the midpoint of GP . Hence G1G2 = MN

2 , G2G3 = NP
2 , G1G3 = MP

2 . This implies
[G1G2G3] =

1
4 [MNP ] = [ABC].

4. Let x, y, z, w be positive real numbers, and suppose that xyzw = 16. Show that

x2

x+ y
+

y2

y + z
+

z2

z + w
+

w2

w + x
≥ 4

with equality only when x = y = z = w = 2.

Solution: The Cauchy inequality gives

(

(

x√
x+ y

)2

+

(

y√
y + z

)2

+

(

z√
z + w

)2

+

(

w√
w + x

)2
)

×
(

(
√
x+ y)2 + (

√
y + z)2 + (

√
z + w)2 + (

√
w + x)2

)

≥ (x+ y + z + w)2,

with equality only when x = y = z = w. This simplifies to:

(

x2

x+ y
+

y2

y + z
+

z2

z + w
+

w2

w + x

)

· 2(x+ y + z + w) ≥ (x+ y + z + w)2

and hence
(

x2

x+ y
+

y2

y + z
+

z2

z + w
+

w2

w + x

)

≥ x+ y + z + w

2
.

Applying the AM-GM to the right-hand term gives

(

x2

x+ y
+

y2

y + z
+

z2

z + w
+

w2

w + x

)

≥ 2 4
√
xyzw

with equality only when x = y = z = w. Since xyzw = 16, the result follows at once.

5. For any positive integer k define

Hk = 1 +
1

2
+

1

3
+ · · ·+ 1

k
.

Prove that for n ≥ 1,

1 +
1

n+ 1
(H1 +H2 + · · ·+Hn) = Hn+1 .

Solution. For n = 1 we have 1 + 1
2H1 = 1 + 1

2 = H2. Assume that the relation holds for some
n ≥ 1, i.e.,

1 +
1

n+ 1

n
∑

k=1

Hk = Hn+1 .
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Then

1 +
1

n+ 2

n+1
∑

k=1

Hk = 1 +
1

n+ 2
Hn+1 +

n+ 1

n+ 2
· 1

n+ 1

n
∑

k=1

Hk

= 1 +
1

n+ 2
Hn+1 −

n+ 1

n+ 2
+

n+ 1

n+ 2
Hn+1

= Hn+1 +
1

n+ 2
= Hn+2 ,

and the relation holds also for n+1. Therefore, by the principle of induction, the relation holds for
all n ≥ 1.

6. We have a deck of 10, 000 cards, numbered from 1 to 10, 000. A step consists of removing every
card which has a perfect square on it, and then renumbering the remaining cards, starting from 1,
in a consecutive way (i.e., numbering them 1, 2, 3, etc.)

Find, with proof, the number of steps needed to remove all but one card.

Solution. On the first step, we remove the cards numbered 12, 22, 32, . . . , 1002. Then 9900 cards
remain. Since 992 < 9900 < 1002, we remove the cards numbered 12, 22, 32, . . . , 992 in the second
step. After that, 9900− 99 = 9801 = 992 cards are left, which is a perfect square.

In general, if we start with n2 cards for any n ≥ 2, we remove n cards in the first step, after which
n2 − n cards remain. Since (n − 1)2 = n2 − 2n + 1 < n2 − n < n2, we remove n − 1 cards in the
second step. Then exactly (n2 − n)− (n− 1) = (n− 1)2 cards are left. So in two steps we reduce
the number of cards from n2 to (n− 1)2.

It follows that we need 99 pairs of steps, or 2 · 99 = 198 steps in total to remove all but one card.

7. Determine all triples (a, b, c) of positive integers satisfying both of the following properties:

(i) We have a < b < c, and a, b and c are three consecutive odd integers;

(ii) The number a2 + b2 + c2 consists of four equal digits.

Solution. Since a, b and c are three consecutive odd positive integers, we can write a = 2n − 1,
b = 2n+ 1 and c = 2n+ 3, where n is a positive integer. Then

a2 + b2 + c2 = (2n− 1)2 + (2n+ 1)2 + (2n+ 3)2

= (4n2 − 4n+ 1) + (4n2 + 4n+ 1) + (4n2 + 12n+ 9)

= 12n2 + 12n+ 11 .

This needs to be a 4-digit number each of whose digits is equal to p, where p ∈ {0, 1, 2, . . . , 9}.
Hence the integer 12n2 + 12n consists of four digits, of which the first two are equal to p and the
last two are equal to p − 1. Since 12n2 + 12n is divisible by 2, p − 1 has to be even. So we have
the following possibilities for 12n2 +12n: 1100, 3322, 5544, 7766, and 9988. This integer must also
be divisible by 3, so the only integer remaining is 5544: therefore n2 + n = 5544/12 = 462. We can
rewrite this as n2+n−462 = 0. Factorizing this quadratic equation then gives (n−21)(n+22) = 0.
Since n is a positive integer, the only solution is n = 21. So the only triple satisfying the given
properties is (a, b, c) = (41, 43, 45).

8. (a) Find with proof all integers x, y such that

x4 + x2y2 + y4

3

is a prime number.
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(b) Prove that if x and y are integers, then

x4 + x2y2 + y4

5

is not a prime number.

Solution: (a) If x or y is zero, there are clearly no solutions. Also, for any solution (x, y), (±x,±y)
are also solutions.

Suppose that (x, y) is a solution with x, y positive integers. Since

x4 + x2y2 + y4 = (x2 + xy + y2)(x2 − xy + y2),

if y = 1, x2 − x + 1 = 1 or 3, yielding x = 1 or x = 2. However, x = y = 1 does not yield a
solution, so y = 1 implies x = 2 and x4 + x2y2 + y4 = 3 × 7, giving a solution. If y > 1, then

x2 ± xy + y2 = (x± y
2 )

2 + 3y2

4 > 3 unless y = 2 and x = 1, so, we must have y = 2 and x = 1 for a
solution.

So the only solutions are: (x, y) = (2, 1), (2,−1), (−2, 1), (−2,−1), (1, 2), (1,−2), (−1, 2) and (−1,−2).

(b) Assume, for the sake of contradiction, that the result is false and that x and y are integers with

x4 + x2y2 + y4

5

prime. Arguing as in part (a), we see that x and y are nonzero and that we may assume both x
and y are positive and (x, y) 6= (1, 1). Since

x4 + x2y2 + y4 = (x2 + xy + y2)(x2 − xy + y2),

and (x2 + xy + y2) > (x2 − xy + y2), we must have (x2 − xy + y2) = 1 or 5.

We deduce that, in the first case, x = y = 1 which does not satisfy our conditions. Hence we must
have

x2 − xy + y2 = 5,

that is,

(x− y

2
)2 +

3y2

4
= 5.

Since (x− y
2 )

2 ≥ 0, and 3y2

4 ≥ 27
4 > 5, for y ≥ 3, we must have y ≤ 2, and similarly x ≤ 2. Also, at

least one of x, y must be odd. Suppose y is odd. Then y = 1 and x2 − x+1 = 5, so x2 − x− 4 = 0,
so 4x2 − 4x − 16 = 0 and thus (2x − 1)2 = 17, which is impossible since

√
17 is not an integer.A

similar contradiction occurs if we assume that x is odd.

So we have reached a contradiction. This proves the result.

9. A triangle has angles of 36◦, 72◦ and 72◦. Prove that it has at least one side whose length is not
an integer.

Solution: Suppose for the sake of contradiction that the lengths of the sides are integers a, b, b
with the side of length a opposite the angle 36◦. Applying the cosine rule we obtain

a2 = b2 + b2 − 2b2 cos(36◦).

This implies that cos(36◦) is a rational number. We now show that this is not true.

Let y = cos(36◦). Then, since 3× 36◦ = 180◦ − 2× 36◦, we have
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4y3 − 3y = cos(3× 36◦) = − cos(2× 36◦) = −2y2 + 1,

so
4y3 + 2y2 − 3y − 1 = 0,

that is,
(y + 1)(4y2 + 2y − 1) = 0.

Since y 6= −1, 4y2 + 2y − 1 = 0 and y = −1±
√
5

4 , so y = −1+
√
5

4 , as y > 0.

Since
√
5 is irrational, so is y. So our initial supposition led to a contradiction, and the result is

proved.

10. Find with proof all positive integers k such that, for n = 2k, every prime number which divides
n! + 1 also divides n+ 1.

Solution: Suppose that k > 2 is a positive integer with the given property. Let p be a prime
dividing n+1 which also divides n!+1. Then p does not divide n!, so p > n and therefore p = n+1
and n + 1 is prime. Also, n! + 1 must divide a power of p, so, since p is prime, n! + 1 = pm, for
some integer m ≥ 1.

Since n = 2k > 4, p− 1 = 2k, and all the numbers 2, 4, 6, ... , 2k − 2 are even and 4 = 22, so n! + 1
is divisible by 2r+k, where r ≥ ( 12 )(2

k − 2) + 1 = n
2 . ... (1)

Let m = 2sq, where s and q are nonnegative integers with q odd. Then, using the binomial theorem,

pm = (1 + 2k)m

1 + 2km+ 22k
(

m
2

)

+ 23k
(

m
3

)

+ ... +

+22jk
(

m
j

)

+ ... + 2mk

(

m
m

)

. ... (2)

Observe that

(

m
2

)

=
m(m− 1)

2
=

2sq(2sq − 1)

2

is divisible by 2s−1(if s > 0) and thus 22k
(

m
2

)

is divisible by 2k+s+1, since k > 1. More generally,

(

m
j

)

=
m(m− 1)(m− 2) ... (m− j + 1)

j!

=
m

j

(

m− 1
j − 1

)

is divisible by 2s−j+1 (if s ≥ j), and thus 2jk
(

m
j

)

is divisible by 2k+s+1, for 2 ≤ j ≤ k.

Hence equation (2) implies that

pm = 1 + 2k+sq + 2k+s+1h,

for some integer h. Thus 2k+s divides pm − 1 and 2k+s+1 does not divide pm − 1.

So, by (1), k + s ≥ k + r ≥ k + n
2 , so s ≥ n

2 and 2s ≥ 2n/2.

However, it is easy to prove by induction that 2n/2 ≥ n, for n ≥ 4. The inequality is obviously true
when n = 4, and assuming its validity for given t ≥ 4, we deduce that
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2(t+1)/2 = 2t/221/2 ≥ 21/2t = t+ t(21/2 − 1) = t+
t

21/2 + 1
≥ t+

t

3
> t+ 1,

implying its validity for t+ 1.

Hence m = 2sq ≥ 2s ≥ n, and

n! + 1 = (n+ 1)m ≥ (n+ 1)n,

which is absurd, since n! = n(n− 1)(n− 2) ... 2.1 is clearly less than nn−1, for n > 2.

This contradiction shows that k ≤ 2.

The statement holds for k = 1 (there n + 1 = 3 = 2! + 1). and for k = 2 (there n = 4, n + 1 =
5; 4! + 1 = 52.

So the answer to the question is: k = 1 and k = 2.
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