UCD Mathematics Enrichment Programme SOLUTIONS TO SELECTION TEST, 14 FEBRUARY 2015

- 1. (a) Which is the larger number: $A = 200!$ or $B = 100^{200}$? Justify your answer. (b) Which is the larger number: $A = 2000!$ or $B = 100^{2000}$? Justify your answer. Solution:
	- (a) $B > A$:

We have

$$
\frac{A}{B} = \frac{200}{100} \cdot \frac{199}{100} \cdots \frac{100}{100} \cdot \frac{99}{100} \cdots \frac{1}{100}
$$
\n
$$
= \frac{200}{100} \left(\frac{199}{100} \cdot \frac{1}{100} \right) \cdot \left(\frac{198}{100} \cdot \frac{2}{100} \right) \cdots \left(\frac{101}{100} \cdot \frac{99}{100} \right)
$$

This expression is < 1 since the product of the first three terms is less than 1 and each of the products

$$
\left(\frac{100+k}{100} \cdot \frac{100-k}{100}\right) = \left(1 + \frac{k}{100}\right) \cdot \left(1 - \frac{k}{100}\right) = 1 - \frac{k^2}{100^2}
$$

is less than 1. So $A/B < 1$ as claimed.

(b) $A > B$:

The product A/B is the product of all terms $n/100$ as n goes from 1 to 2000. This product contains the 99 products of three terms

$$
\left(\frac{k}{100} \cdot \frac{2000 - k}{100} \cdot \frac{1000 - k}{100}\right)
$$

as k goes from 1 to 99. Each of these terms is > 1 since each is greater than

$$
\left(\frac{1}{100} \cdot \frac{1900}{100} \cdot \frac{900}{100}\right) = \frac{19 \cdot 9 \cdot 100^2}{100^3} > 1.
$$

All remaining factors in the product A/B are of the form $n/100$ with $n \ge 100$. Thus $A/B > 1$.

2. Show that for all positive integers $n \geq 2$ we have

$$
n!<\left(\frac{n+1}{2}\right)^n.
$$

Solution: The AM-GM inequality gives

$$
1+2+\cdots+n>n\sqrt[n]{1\cdot 2\cdots n}=n\sqrt[n]{n!}.
$$

Therefore

$$
\frac{n(n+1)}{2} = 1 + 2 + \dots + n > n \sqrt[n]{n!}.
$$

Cancelling n on both sides gives

$$
\frac{n+1}{2} > \sqrt[n]{n!}
$$

and taking n-th powers gives the required inequality.

3. In triangle ABC we denote by A' , B' , C' the midpoints of sides BC, CA and AB respectively. We extend AA' beyond A' with $A'M = AA'$. We extend BB' beyond B' with $B'N = BB'$ and extend CC' beyond C' with $C'P = CC'$. Denote by G_1 , G_2 and G_3 the centroids of triangles MBC, NAC and PAB. Prove that triangles ABC and $G_1G_2G_3$ have the same area.

Solution: We note first that ABMC is a parallelogram since its diagonals AM and BC have the same midpoint A'. Similarly $ABCN$ and $ACBP$ are parallelograms. This yields $AN||BC$ and $AP||BC$ so A, N, P are collinear. Similarly B, M, P and C, M, N are collinear. It follows that A, B, C are the midpoints of NP, MP and MN respectively. Denote by G the centroid of ABC. Using the property of the centroid that it is located at $2/3$ of the vertex and $1/3$ of the base, we deduce $AG = GG_1 = G_1M$. Thus, G_1 is the midpoint of GM . Similarly, G_2 is the midpoint of GN and G_3 is the midpoint of GP. Hence $G_1G_2 = \frac{MN}{2}$, $G_2G_3 = \frac{NP}{2}$, $G_1G_3 = \frac{MP}{2}$. This implies $[G_1G_2G_3] = \frac{1}{4}[MNP] = [ABC].$

4. Let x, y, z, w be positive real numbers, and suppose that $xyzw = 16$. Show that

$$
\frac{x^2}{x+y} + \frac{y^2}{y+z} + \frac{z^2}{z+w} + \frac{w^2}{w+x} \ge 4
$$

with equality only when $x = y = z = w = 2$.

Solution: The Cauchy inequality gives

$$
\left(\left(\frac{x}{\sqrt{x+y}} \right)^2 + \left(\frac{y}{\sqrt{y+z}} \right)^2 + \left(\frac{z}{\sqrt{z+w}} \right)^2 + \left(\frac{w}{\sqrt{w+x}} \right)^2 \right) \times \left((\sqrt{x+y})^2 + (\sqrt{y+z})^2 + (\sqrt{z+w})^2 + (\sqrt{w+x})^2 \right) \times \left(x+y+z+w \right)^2,
$$

with equality only when $x = y = z = w$. This simplifies to:

$$
\left(\frac{x^2}{x+y} + \frac{y^2}{y+z} + \frac{z^2}{z+w} + \frac{w^2}{w+x}\right) \cdot 2(x+y+z+w) \ge (x+y+z+w)^2
$$

and hence

$$
\left(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+w}+\frac{w^2}{w+x}\right)\geq \frac{x+y+z+w}{2}
$$

.

Applying the AM-GM to the right-hand term gives

$$
\left(\frac{x^2}{x+y} + \frac{y^2}{y+z} + \frac{z^2}{z+w} + \frac{w^2}{w+x}\right) \ge 2\sqrt[4]{xyzw}
$$

with equality only when $x = y = z = w$. Since $xyzw = 16$, the result follows at once.

5. For any positive integer k define

$$
H_k = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{k}.
$$

Prove that for $n \geq 1$,

$$
1 + \frac{1}{n+1} (H_1 + H_2 + \dots + H_n) = H_{n+1} .
$$

Solution. For $n = 1$ we have $1 + \frac{1}{2}H_1 = 1 + \frac{1}{2} = H_2$. Assume that the relation holds for some $n \geq 1$, i.e.,

$$
1 + \frac{1}{n+1} \sum_{k=1}^{n} H_k = H_{n+1} .
$$

Then

$$
1 + \frac{1}{n+2} \sum_{k=1}^{n+1} H_k = 1 + \frac{1}{n+2} H_{n+1} + \frac{n+1}{n+2} \cdot \frac{1}{n+1} \sum_{k=1}^{n} H_k
$$

=
$$
1 + \frac{1}{n+2} H_{n+1} - \frac{n+1}{n+2} + \frac{n+1}{n+2} H_{n+1}
$$

=
$$
H_{n+1} + \frac{1}{n+2}
$$

=
$$
H_{n+2},
$$

and the relation holds also for $n+1$. Therefore, by the principle of induction, the relation holds for all $n \geq 1$.

6. We have a deck of 10, 000 cards, numbered from 1 to 10, 000. A step consists of removing every card which has a perfect square on it, and then renumbering the remaining cards, starting from 1, in a consecutive way (i.e., numbering them 1, 2, 3, etc.)

Find, with proof, the number of steps needed to remove all but one card.

Solution. On the first step, we remove the cards numbered 1^2 , 2^2 , 3^2 , ..., 100^2 . Then 9900 cards remain. Since $99^2 < 9900 < 100^2$, we remove the cards numbered $1^2, 2^2, 3^2, \ldots, 99^2$ in the second step. After that, $9900 - 99 = 9801 = 99^2$ cards are left, which is a perfect square.

In general, if we start with n^2 cards for any $n \ge 2$, we remove n cards in the first step, after which $n^2 - n$ cards remain. Since $(n-1)^2 = n^2 - 2n + 1 < n^2 - n < n^2$, we remove $n-1$ cards in the second step. Then exactly $(n^2 - n) - (n - 1) = (n - 1)^2$ cards are left. So in two steps we reduce the number of cards from n^2 to $(n-1)^2$.

It follows that we need 99 pairs of steps, or $2 \cdot 99 = 198$ steps in total to remove all but one card.

- 7. Determine all triples (a, b, c) of positive integers satisfying both of the following properties:
	- (i) We have $a < b < c$, and a, b and c are three consecutive odd integers;
	- (ii) The number $a^2 + b^2 + c^2$ consists of four equal digits.

Solution. Since a, b and c are three consecutive odd positive integers, we can write $a = 2n - 1$, $b = 2n + 1$ and $c = 2n + 3$, where *n* is a positive integer. Then

$$
a^{2} + b^{2} + c^{2} = (2n - 1)^{2} + (2n + 1)^{2} + (2n + 3)^{2}
$$

= $(4n^{2} - 4n + 1) + (4n^{2} + 4n + 1) + (4n^{2} + 12n + 9)$
= $12n^{2} + 12n + 11$.

This needs to be a 4-digit number each of whose digits is equal to p, where $p \in \{0, 1, 2, \ldots, 9\}$. Hence the integer $12n^2 + 12n$ consists of four digits, of which the first two are equal to p and the last two are equal to $p-1$. Since $12n^2 + 12n$ is divisible by 2, $p-1$ has to be even. So we have the following possibilities for $12n^2 + 12n$: 1100, 3322, 5544, 7766, and 9988. This integer must also be divisible by 3, so the only integer remaining is 5544: therefore $n^2 + n = 5544/12 = 462$. We can rewrite this as $n^2 + n - 462 = 0$. Factorizing this quadratic equation then gives $(n-21)(n+22) = 0$. Since n is a positive integer, the only solution is $n = 21$. So the only triple satisfying the given properties is $(a, b, c) = (41, 43, 45)$.

8. (a) Find with proof all integers x, y such that

$$
\frac{x^4 + x^2y^2 + y^4}{3}
$$

is a prime number.

(b) Prove that if x and y are integers, then

$$
\frac{x^4 + x^2y^2 + y^4}{5}
$$

is not a prime number.

Solution: (a) If x or y is zero, there are clearly no solutions. Also, for any solution (x, y) , $(\pm x, \pm y)$ are also solutions.

Suppose that (x, y) is a solution with x, y positive integers. Since

$$
x^{4} + x^{2}y^{2} + y^{4} = (x^{2} + xy + y^{2})(x^{2} - xy + y^{2}),
$$

if $y = 1, x^2 - x + 1 = 1$ or 3, yielding $x = 1$ or $x = 2$. However, $x = y = 1$ does not yield a solution, so $y = 1$ implies $x = 2$ and $x^4 + x^2y^2 + y^4 = 3 \times 7$, giving a solution. If $y > 1$, then $x^2 \pm xy + y^2 = (x \pm \frac{y}{2})^2 + \frac{3y^2}{4} > 3$ unless $y = 2$ and $x = 1$, so, we must have $y = 2$ and $x = 1$ for a solution.

So the only solutions are: $(x, y) = (2, 1), (2, -1), (-2, 1), (-2, -1), (1, 2), (1, -2), (-1, 2)$ and $(-1, -2)$.

(b) Assume, for the sake of contradiction, that the result is false and that x and y are integers with

$$
\frac{x^4+x^2y^2+y^4}{5}
$$

prime. Arguing as in part (a), we see that x and y are nonzero and that we may assume both x and y are positive and $(x, y) \neq (1, 1)$. Since

$$
x^{4} + x^{2}y^{2} + y^{4} = (x^{2} + xy + y^{2})(x^{2} - xy + y^{2}),
$$

and $(x^2 + xy + y^2) > (x^2 - xy + y^2)$, we must have $(x^2 - xy + y^2) = 1$ or 5.

We deduce that, in the first case, $x = y = 1$ which does not satisfy our conditions. Hence we must have

$$
x^2 - xy + y^2 = 5,
$$

that is,

$$
(x - \frac{y}{2})^2 + \frac{3y^2}{4} = 5.
$$

Since $(x - \frac{y}{2})^2 \ge 0$, and $\frac{3y^2}{4}$ $\frac{y^2}{4} \geq \frac{27}{4} > 5$, for $y \geq 3$, we must have $y \leq 2$, and similarly $x \leq 2$. Also, at least one of x, y must be odd. Suppose y is odd. Then $y = 1$ and $x^2 - x + 1 = 5$, so $x^2 - x - 4 = 0$, so $4x^2 - 4x - 16 = 0$ and thus $(2x - 1)^2 = 17$, which is impossible since $\sqrt{17}$ is not an integer.A similar contradiction occurs if we assume that x is odd.

So we have reached a contradiction. This proves the result.

9. A triangle has angles of 36°,72° and 72°. Prove that it has at least one side whose length is not an integer.

Solution: Suppose for the sake of contradiction that the lengths of the sides are integers a, b, b with the side of length a opposite the angle $36°$. Applying the cosine rule we obtain

$$
a^2 = b^2 + b^2 - 2b^2 \cos(36^\circ).
$$

This implies that $cos(36°)$ is a rational number. We now show that this is not true. Let $y = \cos(36^\circ)$. Then, since $3 \times 36^\circ = 180^\circ - 2 \times 36^\circ$, we have

$$
4y^3 - 3y = \cos(3 \times 36^\circ) = -\cos(2 \times 36^\circ) = -2y^2 + 1,
$$

so

$$
4y^3 + 2y^2 - 3y - 1 = 0,
$$

that is,

$$
(y+1)(4y^2+2y-1) = 0.
$$

Since
$$
y \neq -1
$$
, $4y^2 + 2y - 1 = 0$ and $y = \frac{-1 \pm \sqrt{5}}{4}$, so $y = \frac{-1 + \sqrt{5}}{4}$, as $y > 0$.

Since $\sqrt{5}$ is irrational, so is y. So our initial supposition led to a contradiction, and the result is proved.

10. Find with proof all positive integers k such that, for $n = 2^k$, every prime number which divides $n! + 1$ also divides $n + 1$.

Solution: Suppose that $k > 2$ is a positive integer with the given property. Let p be a prime dividing $n+1$ which also divides $n!+1$. Then p does not divide n!, so $p > n$ and therefore $p = n+1$ and $n + 1$ is prime. Also, $n! + 1$ must divide a power of p, so, since p is prime, $n! + 1 = p^m$, for some integer $m \geq 1$.

Since $n = 2^k > 4, p - 1 = 2^k$, and all the numbers 2, 4, 6, ..., $2^k - 2$ are even and $4 = 2^2$, so $n! + 1$ is divisible by 2^{r+k} , where $r \ge (\frac{1}{2})(2^k - 2) + 1 = \frac{n}{2}$ (1)

Let $m = 2^sq$, where s and q are nonnegative integers with q odd. Then, using the binomial theorem,

$$
p^{m} = (1+2^{k})^{m}
$$

$$
1+2^{k}m+2^{2k} \binom{m}{2} + 2^{3k} \binom{m}{3} + \dots +
$$

$$
+2^{2jk} \binom{m}{j} + \dots + 2^{mk} \binom{m}{m} \dots \dots (2)
$$

Observe that

$$
\binom{m}{2} = \frac{m(m-1)}{2} = \frac{2^s q (2^s q - 1)}{2}
$$

is divisible by 2^{s-1} (if $s > 0$) and thus $2^{2k} \begin{pmatrix} m \\ n \end{pmatrix}$ 2 is divisible by 2^{k+s+1} , since $k > 1$. More generally,

$$
\begin{pmatrix}\nm \\
j\n\end{pmatrix} = \frac{m(m-1)(m-2) \dots (m-j+1)}{j!}
$$
\n
$$
= \frac{m}{j} \begin{pmatrix} m-1 \\
j-1 \end{pmatrix}
$$

is divisible by 2^{s-j+1} (if $s \geq j$), and thus $2^{jk} \begin{pmatrix} m \\ i \end{pmatrix}$ j is divisible by 2^{k+s+1} , for $2 \leq j \leq k$. Hence equation (2) implies that

$$
p^m = 1 + 2^{k+s}q + 2^{k+s+1}h,
$$

for some integer h. Thus 2^{k+s} divides $p^m - 1$ and 2^{k+s+1} does not divide $p^m - 1$. So, by (1), $k + s \ge k + r \ge k + \frac{n}{2}$, so $s \ge \frac{n}{2}$ and $2^s \ge 2^{n/2}$.

However, it is easy to prove by induction that $2^{n/2} \ge n$, for $n \ge 4$. The inequality is obviously true when $n = 4$, and assuming its validity for given $t \geq 4$, we deduce that

$$
2^{(t+1)/2} = 2^{t/2}2^{1/2} \ge 2^{1/2}t = t + t(2^{1/2} - 1) = t + \frac{t}{2^{1/2} + 1} \ge t + \frac{t}{3} > t + 1,
$$

implying its validity for $t + 1$. Hence $m = 2^s q \geq 2^s \geq n$, and

$$
n! + 1 = (n+1)^m \ge (n+1)^n,
$$

which is absurd, since $n! = n(n-1)(n-2)$... 2.1 is clearly less than n^{n-1} , for $n > 2$. This contradiction shows that $k \leq 2$.

The statement holds for $k = 1$ (there $n + 1 = 3 = 2! + 1$). and for $k = 2$ (there $n = 4, n + 1 = 1$) $5; 4! + 1 = 5^2.$

So the answer to the question is: $k = 1$ and $k = 2$.