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Mathematical statements consist of an assumption (usually
followed by “if”) and a conclusion (usually followed by “then”).
Our objective is to start with the assumption and after a number
of logical steps reach the conclusion. A proof is a logical path
connecting the assumption with the conclusion. There are many
proof methods, but we shall focus on the following:

1. Proof by Contradiction.

2. Separating Cases.

3. Mathematical Induction/Strong Mathematical Induction.

4. Pigeonhole Principe/General Pigeonhole Principle.



Proof by Contradiction

Suppose that we want to show that
“If D is true, then B is true”. It suffices to show that
if B is NOT true, then D cannot be true.



Example

(1) Let m be a positive integer. If m2 is even show that m is even.

Proof.
For the sake of contradiction we assume that the conclusion is
not true, i.e. that m is not even. This means that m = 2k + 1 for
some integer k . We want to show that m2 cannot be even! We
have:

m2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1,

which means that m2 is odd. This contradicts our assumption
that m2 is even. Thus the conclusion is true, i.e. m is even.

Exercise
(2) Let m be a positive integer. If m2 is odd show that m is odd.



♣ A number r is called rational if it can be expressed as a

quotient
m

n
of two integers m and n (with n 6= 0). If r doesn’t

have such an expression, is called irrational. For example, 0.25 is

rational because 0.25 =
1

4
.

Example

(3) Show that
√

2 is irrational.

Proof.
Assume that

√
2 was rational. Then

√
2 =

m

n
for some integers

m and n (with n 6= 0). We can also assume that m and n do not
have any common prime factors (if they had, we would eliminate

them). By squaring: 2 = (
√

2)2 =
(m
n

)2
=

m2

n2
⇔ m2 = 2n2.

Thus m2 is even and so m is even by Ex. (1), which means that
m = 2k for some integer k .
Replacing we get: 4k2 = (2k)2 = 2n2 ⇔ n2 = 2k2. Thus n2 is
even and so n is even by Ex. (1). This is a contradiction because
m and n have 2 as a common factor. Thus

√
2 is irrational.



Exercise (4) Suppose that we paint the entire plane with green
and orange colour so that every point is either orange or green and
both colours exist in our painting). Show that for each positive
number d there exist two points with different colour whose
distance is exactly d .

Proof.
For the sake of contradiction we assume that there exists a
positive number d such that for each two points which have
distance d , their colour has to be the same. Thus, if G is a green
point, then the circles centred at G with radii d , 2d , 3d , ... have
to be green. By choosing an orange point O, we see that the
corresponding orange circles will intersect the green circles, which
yields a contradiction (since each point has one colour).



♣ It is important to know that when we take the negation of a
statement:

I “for all” (denoted by ∀) becomes “exists” (denoted by ∃)

I “exists” becomes “for all”

I “or” becomes “and”

I “and” becomes “or”

(* Here “or” is not exclusive, meaning that the cases it connects
can occur simultaneously.)
For example, the negation of the sentence
“I have a brother or a sister” (i.e.“I have siblings”) is
“ I do not have a brother and I do not have a sister”.



Separating Cases

♣ There is a natural way to extend the notion of powers to
(positive) irrational numbers, preserving all the good properties we
have for powers involving integers.
Exercise (5) Show there are two irrational numbers a and b such
that ab is rational.
Hint: Consider the number (

√
2)

√
2 and separate two cases:

1. (
√

2)
√
2 is rational.

2. (
√

2)
√
2 is irrational.

For case 1: take a =
√

2 and b =
√

2. Then ab is rational.
For case 2: take a = (

√
2)

√
2 and b =

√
2. Then

ab = (
√

2)
√
2)

√
2 = (

√
2)

√
2
√
2 = (

√
2)2 = 2 which rational!

Be careful: When you separate cases make sure you covered
each possible scenario! (A real number will be either rational or
irrational-there is no other option. But it is wrong to say that a
real number will be either even or odd!)



Mathematical Induction

Mathematical induction is a very useful tool in Mathematics. The
general idea is that when we want to prove a statement for ALL
natural numbers it suffices to do the following steps:

1. Prove the statement for the first number.

2. If we assume that the statement is correct for a natural
number k, then we should prove that the statement is correct
for the next number k + 1.



Example

(6) What formula we would get if we sum the first n odd numbers?

To guess the correct formula we calculate and try to find a pattern:

1 = 1 = 12

1 + 3 = 4 = 22

1 + 3 + 5 = 9 = 32

1 + 3 + 5 + 7 = 16 = 42.

So, suppose we have n terms in our sum, these terms being the
first n positive odd numbers. The nth term is in fact 2n − 1 and
the sum is

1 + 3 + 5 + · · ·+ 2n − 1.

Following the pattern above, we believe that this sum should equal
n2, so that the formula

1 + 3 + 5 + · · ·+ (2n − 1) = n2

should be true.



However, we have not proved this yet. To prove statements for
natural numbers (like the one just discussed) we should apply the
method of mathematical induction. In this method we should
follow 3 steps:

I We check that the statement is true for the first number.
(Here we have checked that the formula is true for n = 1, 2,
3, 4.)

I We assume that the statement is true for some particular
value of k . We call this our induction hypothesis.

I We then try to prove the statement for the next number
succeeding k, namely k + 1, using the induction hypothesis.
We call this the induction step.



In our example, when try to make the induction step, we are
required to prove that

1 + 3 + 5 + · · ·+ (2k − 1) + (2k + 1) = (k + 1)2.

Here, we have added the (k + 1)th odd number, which is 2k + 1,
to the previous sum to form the sum to k + 1 terms.
But now, by the induction hypothesis,

1 + 3 + 5 + · · ·+ 2k − 1 = k2.

We add 2k + 1 to each side of this equation and obtain

1 + 3 + 5 + · · ·+ (2k − 1) + (2k + 1) = k2 + 2k + 1.



But k2 + 2k + 1 = (k + 1)2, and hence

1 + 3 + 5 + · · ·+ (2k − 1) + (2k + 1) = (k + 1)2.

This completes the induction step, and proves that the formula
holds for all values of n.

To sum up: Suppose that we have a statement P(n) involving the
natural number n. In our example, the statement P(n) was the
equality

1 + 3 + 5 + · · ·+ 2n − 1 = n2.

I Suppose that P(1) is true.

I Suppose also that for any particular number k , the truth of
P(k) implies the truth of P(k + 1).

Then P(n) is true for all positive integers n.



Example

(7) Let x ≥ −1 be a real number. Then the inequality

(1 + x)n ≥ 1 + nx

is true for all positive integers n.

We will prove this inequality by mathematical induction.
Let P(n) be the proposition that (1 + x)n ≥ 1 + nx .

I P(1) is the statement that

(1 + x)1 ≥ 1 + 1 · x .

Since (1 + x)1 = 1 + x , we conclude that P(1) is true.

I We assume that P(k) is true. Thus we assume that

(1 + x)k ≥ 1 + kx .

I We want to prove that P(k + 1) is true.



Example Continued

P(k + 1) is the statement that

(1 + x)k+1 ≥ 1 + (k + 1)x .

Now since we are assuming that x ≥ −1, it follows that 1 + x ≥ 0.
Then we may multiply each side of the inequality
(1 + x)k ≥ 1 + kx by 1 + x and obtain

(1 + x)(1 + x)k ≥ (1 + x)(1 + kx).

This gives

(1 + x)k+1 ≥ 1 + kx + x + kx2 = 1 + (k + 1)x + kx2.



Example Continued

But kx2 ≥ 0 for any real number x , as x2 is a square, and hence

1 + (k + 1)x + kx2 ≥ 1 + (k + 1)x .

Thus we have

(1 + x)k+1 ≥ 1 + (k + 1)x + kx2 ≥ 1 + (k + 1)x .

This implies that P(k + 1) is true and completes the induction
step. Thus P(n) is true for each positive integer n.
♣ We call the inequality described by P(n) Bernoulli’s Inequality.



Example

(8) Examine for which positive integers n, the inequality

2n ≥ n2

is true.
Let P(n) be the proposition that 2n ≥ n2.
We can see that P(1) and P(2) are true, but P(3) is false, because

23 = 8 < 32 = 9.

But P(4) is true, as 24 = 16 = 42.



Example Continued

We propose to prove that P(n) is true if n ≥ 4, and we do this by
mathematical induction.
We assume that P(k) is true, where k ≥ 4.
This means that 2k ≥ k2 is true.
Now we want to prove that P(k + 1) is true. This means that

2k+1 ≥ (k + 1)2 is true.

Since 2k ≥ k2 is true we may multiply by 2 to obtain

2× 2k = 2k+1 ≥ 2k2.

Now we simply need to prove that 2k2 ≥ (k + 1)2 if k ≥ 4.



Example Continued

Consider the number
2k2 − (k + 1)2.

This equals

2k2 − (k2 + 2k + 1) = k2 − 2k − 1 = (k − 1)2 − 2,

which is positive if k ≥ 4. Hence P(k + 1) is true if k ≥ 4. Thus it
is true that 2n ≥ n2 if n ≥ 4.

Remark: As we saw in the above example, in mathematical
induction we do not necessarily have to start by n = 1. This
means that if we want to prove a statement for all integers n ≥ n0,
where n0 is a fixed integer, it suffices to do the following steps:

I Show that P(n0) is true.

I Assume that P(k) is true for some k ≥ n0 and use this to
show that P(k + 1) is true.



Strong Mathematical Induction

Sometimes the normal mathematical induction is not enough to
prove what we want. We have a stronger kind of mathematical
induction, which is called strong mathematical induction and has
the following steps:

I We show that P(1) is true.

I We assume that P(1),P(2), . . . ,P(k) are true and we use this
information to show that P(k + 1) is true.

Then the statement P(n) is true for all positive integers n.



Example

(9) Which positive integers can be written as a sum of 3’s and 5’s?
For example we have:
3 = 3 5 = 5 6 = 3 + 3
8 = 3 + 5 9 = 3 + 3 + 3 10 = 5 + 5
11 = 3 + 3 + 5 12 = 3 + 3 + 3 + 3

We will show that all integers n ≥ 8 can be written as a sum of 3’s
and 5’s.

Solution:
Statement P(n): the integer n can be written as a sum of 3’s and
5’s.

I We checked that P(8) is true. (Also we saw that
P(9),P(10),P(11),P(12) are true.)

I We suppose that for k ≥ 8 we have that P(8),P(9), . . . ,P(k)
are true. We will use this to show that P(k + 1) is true.



Example Continued

The (strong) inductive hypothesis tells us that for k ≥ 8 we have
that each of the numbers 8, 9, . . . , k can be written as a sum of 3’s
and 5’s.
We observe that: k+1=(k-2)+3.

Case 1: If 8 ≤ k − 2 ≤ k. Then by using our inductive hypothesis we
have that k − 2 is a sum of 3’s and 5’s. Hence
k + 1 = (k − 2) + 3 is also a sum of 3’s and 5’s. This means
that P(k + 1) is true for Case 1.

Case 2: If k − 2 < 8. This implies k = 8 or k = 9 (because also k is
an integer greater or equal to 8). But we have already seen
that P(9) = P(8 + 1) and P(10) = P(9 + 1) are true. This
means that P(k + 1) is true for Case 2.

Conclusion: P(k + 1) is true for each case. Hence by strong
mathematical induction we have that P(n) is true for all integers
n ≥ 8, which completes the proof.



In the above example we needed strong induction because we had
to jump 2 (and not 1) steps backwards to use the inductive
hypothesis. An other important application of strong mathematical
induction is the “Fundamental Theorem of Arithmetic”. To
formulate this we need the following definition:

� An integer number n ≥ 2 is called a prime if the only positive
integer numbers a and b which satisfy the equation n = ab are the
numbers 1 and n.

For example 2, 3, 5, 7, 11, 13, 17, 19 are primes, but 21 and 25 are
not primes (because 21 = 3× 7 and 25 = 5× 5).

The Fundamental Theorem of Arithmetic
Each integer n ≥ 2 is either a prime or it can be written as a
product of primes.

(The proof, which is omitted, uses strong mathematical induction.)



The Pigeonhole Principle

“If we must put N + 1 (or more) pigeons into N pigeonholes, then
some pigeonhole must contain at least 2 pigeons.”

(General Pigeonhole Principle) “If we must put Nk + 1 (or
more) pigeons into N pigeonholes, then some pigeonhole must
contain at least k + 1 pigeons.”



Exercises

(10) 100 students are seated (equidistant) at a round table and
more than half are boys. Show that there are (at least) 2 boys
who are seated diametrically opposite each other.

(11) Show that in this room there are at least 2 people with the
same number of friends within the room. (Unlike real life, we
assume that if A considers that B is his friend, then also B
considers A as his friend.)

(12) 51 points are scattered inside a square with a side of 100cm.
Prove that some set of 3 of these points can be covered by a
square of side 20 cm.



Exercise (10)

Proof.
We will apply the Pigeonhole Principle. The pigeonholes are the
diameters, which are 50. The pigeons are the boys, which are more
than 50. Thus, some diameter (pigeonhole) must contain at least
2 boys (pigeons).



Exercise (11)

Proof.
Suppose that there are N people and let an be the number of
friends of the nth person, where n = 1, 2, . . . ,N. Everyone is friend
with himself, hence an is an integer between 1 and N.

I Case 1: If for some i = 1, 2, . . . ,N we have ai = N.
This means that there is a very popular person who is friend
with everyone else. Thus, for each n = 1, 2, . . . ,N, the
number an is an integer between 2 and N (since even the least
popular person would have (at least) 2 friends: himself and
the popular ith person). The pigeonholes are the N − 1
distinct numbers 2, 3, . . . ,N and the pigeons are the N
numbers a1, a2, . . . , aN .

I Case 2: If for every n = 1, 2, . . . ,N we have an < N.
The pigeonholes are the N−1 distinct numbers 1, 2, . . . ,N−1
and the pigeons are the N numbers a1, a2, . . . , aN .

In both cases, the Pigeonhole Principle implies that at least 2 of
the N numbers a1, a2, . . . , aN must be the same integer.



Exercise (12)

Proof.

We split the given square
into 25 squares of side 20cm (as in the picture)*. The conclusion
follows by the General Pigeonhole Principle, where the
pigeonholes are the 25 squares and the pigeons are the
51 = 2 · 25 + 1 points (i.e. N = 25 and k = 2).
*Detail: We have to make sure that each point belongs to exactly
one small square. Thus we assume that all squares include the
sides at south and west but not the ones at north and east (except
the squares touching the the northern/eastern boarder of the large
square, where we include the corresponding sides).


