THE PRINCIPLE OF INDUCTION

MARK FLANAGAN

School of Electrical and Electronic Engineering University College Dublin

The Principle of Induction: Let a be an integer, and let $P(n)$ be a statement (or proposition) about n for each integer $n \geq a$. The principle of induction is a way of proving that $P(n)$ is true for all integers $n \geq a$. It works in two steps:

- (a) [Base case:] Prove that $P(a)$ is true.
- (b) **[Inductive step:**] Assume that $P(k)$ is true for some integer

 $k \ge a$, and use this to prove that $P(k+1)$ is true.

Then we may conclude that $P(n)$ is true for all integers $n \geq a$.

This principle is very useful in problem solving, especially when we observe a pattern and want to prove it.

The trick to using the Principle of Induction properly is to spot how to use $P(k)$ to prove $P(k+1)$. Sometimes this must be done rather ingeniously!

Problem 1. Prove that for any integer $n \geq 1$,

$$
1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}.
$$

Solution. Let $P(n)$ denote the proposition to be proved. First let's examine $P(1)$: this states that

$$
1 = \frac{1(2)}{2} = 1
$$

which is correct.

Next, we assume that $P(k)$ is true for some positive integer k , i.e.

$$
1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}
$$

.

.

and we want to use this to prove $P(k + 1)$, i.e.

$$
1 + 2 + 3 + \dots + (k + 1) = \frac{(k + 1)(k + 2)}{2}
$$

Taking the LHS and using $P(k)$,

$$
1 + 2 + 3 + \dots + (k + 1) = (1 + 2 + 3 + \dots + k) + (k + 1)
$$

=
$$
\frac{k(k + 1)}{2} + (k + 1)
$$

=
$$
\frac{k(k + 1)}{2} + \frac{2(k + 1)}{2}
$$

=
$$
\frac{(k + 1)(k + 2)}{2}
$$

and thus $P(k + 1)$ is true. This completes the proof.

Problem 2. Find a formula for the sum of the first n odd numbers.

Solution. Note that this time we are not told the formula that we have to prove; we have to find it ourselves! Let's try some small numbers and see if a pattern emerges:

$$
1 = 1; \quad 1 + 3 = 4; \quad 1 + 3 + 5 = 9;
$$

$$
1 + 3 + 5 + 7 = 16; \quad 1 + 3 + 5 + 7 + 9 = 25;
$$

We conjecture (guess) that the sum of the first n odd numbers is equal to $n^2.$ Now let's prove this proposition using the principle of induction; call it $P(n)$.

Our statement $P(n)$ is that

$$
1+3+5+7+\cdots+(2n-1)=n^2.
$$

First we prove the base case $P(1)$, i.e.

$$
1 = 1^2
$$

This is certainly true. Now we assume that $P(k)$ is true, i.e.

$$
1+3+5+7+\cdots+(2k-1)=k^2.
$$

and consider $P(k + 1)$:

$$
1+3+5+7+\cdots+(2k+1)=(k+1)^2.
$$

Taking the LHS and using $P(k)$,

$$
1 + 3 + 5 + \dots + (2k + 1) = (1 + 3 + 5 + \dots + (2k - 1)) + (2k + 1)
$$

= $k^2 + (2k + 1)$
= $(k + 1)^2$.

and thus $P(k + 1)$ is true. This completes the proof.

Exercise 1. Show that for all $n \geq 1$,

$$
1^2 + 3^2 + 5^2 + \dots + (2n - 1)^2 = \frac{n(4n^2 - 1)}{3}
$$

.

Problem 3. For any positive integer n , find the largest power of 2 that divides $(n + 1)(n + 2) \cdots (2n)$.

Solution. Let $f(n) = (n + 1)(n + 2) \cdots (2n)$. First, let's find the answer for $n = 1, 2, 3, 4$ to see if any pattern emerges:

> $n=1: \quad f(1)=2$ is divisible by 2^1 $n=2: \quad f(2)=3\cdot 4$ is divisible by 2^2 $n=3: \quad f(3)=4\cdot 5\cdot 6$ is divisible by 2^3 $n=4: \quad f(4)=5\cdot 6\cdot 7\cdot 8$ is divisible by 2^4

So it seems that the largest power of 2 dividing $f(n)$ is 2^n . Now, let's prove this by induction.

The base case $n = 1$ is already done above. Assume that the result holds for $n = k$, i.e., that the largest power of 2 dividing $f(k)=(k+1)(k+2)\cdots(2k)$ is 2^k for some $k\geq 1.$ Now look at

$$
f(k+1) = (k+2)(k+3)\cdots(2k)(2k+1)(2k+2)
$$

= [(k+1)(k+2)\cdots(2k)] \cdot \left[\frac{(2k+1)(2k+2)}{k+1} \right]
= 2(2k+1)f(k)

Since $2k+1$ is odd, and the highest power of 2 dividing $f(k)$ is 2^k , it follows that the highest power of 2 dividing $f(k+1)$ is $2^{k+1}.$ This completes the proof.

Alternative Solution. Note that

$$
\frac{f(n)}{2^n} = \frac{(n+1)(n+2)\cdots(2n)}{2^n}
$$

$$
= \frac{1\cdot 2\cdot 3\cdots 2n}{2^n\cdot 1\cdot 2\cdot 3\cdots n}
$$

$$
= \frac{1\cdot 2\cdot 3\cdots 2n}{2\cdot 4\cdot 6\cdots 2n}
$$

$$
= 1\cdot 3\cdot 5\cdot 7\cdots (2n-1).
$$

This is the product of all the *odd* integers from 1 to $2n - 1$.

Exercise 2. Show that for all $n \geq 1$, we have $f(n) = g(n)$, where

$$
f(n) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n - 1} - \frac{1}{2n}
$$

and

$$
g(n) = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}.
$$

Exercise 3.

Prove that every number in the sequence

1007, 10017, 100117, 1001117, 10011117, . . .

is divisible by 53.

Problem 4.

(a) Consider a circle and l lines in the plane, such that every line intersects the circle at two distinct points. Let p denote the number of points strictly inside the circle at which a pair of lines intersect each other. Also, let r denote the number of regions into which the circle is divided by the lines. Prove that

$$
r=l+p+1.
$$

Solution.

(a) We will first prove that $r = l+p+1$ by induction on the number of lines.

The base case $l = 0$ is trivial; with no lines, there are no points of intersection inside the circle $(p = 0)$ and the number of regions is $r = 1$ (the circle itself).

Suppose the relationship $r = l + p + 1$ is valid for some number l of lines. We will show that it remains valid if another line is added. Let's add a new line to the picture. Suppose that it intersects the other lines at s points *inside* the circle (note that s could be zero). These s points of intersection split the new line into $s + 1$ segments within the circle, and each segment splits an old region into two new regions.

Thus *l* increases by 1, *p* increases by *s*, and *r* increases by $s + 1$. The formula $r = l + p + 1$ remains valid since both sides increase by $s + 1$.

Therefore, by the principle of induction, the result holds for any number of lines $l \geq 1$.

(b) Let n be a positive integer. Place n points on the circumference of a circle, and draw all possible chords through pairs of these points. Assume that no three chords are concurrent (meet in a single point). Let a_n be the number of regions into which the circle is divided. Find a formula for a_n .

Solution.

We will use the result from part (a). Here we have:

- By definition, the number of regions is $r = a_n$;
- Each pair of points on the circle determines a unique line, so $l = \binom{n}{2}$ $\binom{n}{2}$;
- Each set of 4 points on the circle produces a unique intersection point inside the circle, so $p = \binom{n}{4}$ $\binom{n}{4}$.

Thus we obtain

$$
a_n = \binom{n}{2} + \binom{n}{4} + 1.
$$

Problem 5. Every road in Uniland is one-way. Every pair of cities is connected by exactly one direct road. Show that there exists a city which can be reached from every other city either directly of via at most one other city.

Solution. Suppose there are n cities in Uniland. We will prove this by induction on n, starting with the base case $n = 2$. So first we prove that the proposition holds for 2 cities. This is easy since if there are only two cities A and B with a road from A to B, then B satisfies the conditions of the problem.

A city satisfying the conditions of the problem will be called a H city. Next we assume that the result holds for k cities. This means that among the k cities there must be a H-city; let's call it A.

This means that every other city in Uniland has a road going directly to A (in which case we call it a D -city for A), or else a route going to A using some D -city X (in which case we call it an N -city for A). So every city in Uniland is either a D-city or an N-city for A. Next we add one more city to Uniland, call this city P . We use the following reasoning:

- **Case 1:** If a road goes from P to A, then P is a D-city for A. Therefore A is a H -city for the new problem.
- **Case 2:** Let X be a D -city. If there is a road from P to D , then P is an N -city for A . Therefore A is a H -city for the new problem.
- **Case 3:** The only other possibility is that roads go from A to P and from every D-city of A to P. But there is also a direct road from every N-city of A to some D-city of A. And so P is a H -city for the new problem.

Alternative Solution using the "Extremal Principle".

Let m be the *maximum* number of direct roads leading into any city, and let M be a city for which this maximum is attained.

Let D be the set of m cities with direct connections into M .

Let R be the set of all cities apart from M and the cities in D .

If R is empty, then M is the required city. If $X \in R$, then there is a city E in D such that a road leads from E in D , so that is it possible to reach M from X via D .

If such a city E did not exist, this would mean that all cities in D connect directly to X.

Since M also connects directly to X, there are $m+1$ direct roads into X . This is a contradiction, since the maximum number of direct roads leading into any city is m .

Therefore, every city with the maximum number of entering roads satisfies the conditions of the problem.

Exercise 4 (BMO Round 1, 1997).

For positive integers n, the sequence a_1, a_2, a_3, \ldots is defined by $a_1 = 1$ and

$$
a_n = \left(\frac{n+1}{n-1}\right)(a_1 + a_2 + \dots + a_{n-1})
$$

for $n > 1$. Determine the value of a_{1997} .