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The Principle of Induction: Let a be an integer, and let P (n)

be a statement (or proposition) about n for each integer n ≥ a.

The principle of induction is a way of proving that P (n) is true for

all integers n ≥ a. It works in two steps:

(a) [Base case:] Prove that P (a) is true.

(b) [Inductive step:] Assume that P (k) is true for some integer

k ≥ a, and use this to prove that P (k + 1) is true.

Then we may conclude that P (n) is true for all integers n ≥ a.

This principle is very useful in problem solving, especially when we

observe a pattern and want to prove it.

The trick to using the Principle of Induction properly is to spot how

to use P (k) to prove P (k+1). Sometimes this must be done rather

ingeniously!
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Problem 1. Prove that for any integer n ≥ 1,

1 + 2 + 3 + · · · + n =
n(n + 1)

2
.

Solution. Let P (n) denote the proposition to be proved. First let’s

examine P (1): this states that

1 =
1(2)

2
= 1

which is correct.

Next, we assume that P (k) is true for some positive integer k, i.e.

1 + 2 + 3 + · · · + k =
k(k + 1)

2
.

and we want to use this to prove P (k + 1), i.e.

1 + 2 + 3 + · · · + (k + 1) =
(k + 1)(k + 2)

2
.

Taking the LHS and using P (k),

1 + 2 + 3 + · · · + (k + 1) = (1 + 2 + 3 + · · · + k) + (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1)

2
+

2(k + 1)

2

=
(k + 1)(k + 2)

2

and thus P (k + 1) is true. This completes the proof.
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Problem 2. Find a formula for the sum of the first n odd numbers.

Solution. Note that this time we are not told the formula that we

have to prove; we have to find it ourselves! Let’s try some small

numbers and see if a pattern emerges:

1 = 1; 1 + 3 = 4; 1 + 3 + 5 = 9;

1 + 3 + 5 + 7 = 16; 1 + 3 + 5 + 7 + 9 = 25;

We conjecture (guess) that the sum of the first n odd numbers is

equal to n2. Now let’s prove this proposition using the principle of

induction; call it P (n).

Our statement P (n) is that

1 + 3 + 5 + 7 + · · · + (2n− 1) = n2 .

First we prove the base case P (1), i.e.

1 = 12

This is certainly true. Now we assume that P (k) is true, i.e.

1 + 3 + 5 + 7 + · · · + (2k − 1) = k2 .

and consider P (k + 1):

1 + 3 + 5 + 7 + · · · + (2k + 1) = (k + 1)2 .
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Taking the LHS and using P (k),

1 + 3 + 5 + · · · + (2k + 1) = (1 + 3 + 5 + · · · + (2k − 1)) + (2k + 1)

= k2 + (2k + 1)

= (k + 1)2 .

and thus P (k + 1) is true. This completes the proof.

Exercise 1. Show that for all n ≥ 1,

12 + 32 + 52 + · · · + (2n− 1)2 =
n(4n2 − 1)

3
.
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Problem 3. For any positive integer n, find the largest power of 2

that divides (n + 1)(n + 2) · · · (2n).

Solution. Let f (n) = (n + 1)(n + 2) · · · (2n). First, let’s find the

answer for n = 1, 2, 3, 4 to see if any pattern emerges:

n = 1 : f (1) = 2 is divisible by 21

n = 2 : f (2) = 3 · 4 is divisible by 22

n = 3 : f (3) = 4 · 5 · 6 is divisible by 23

n = 4 : f (4) = 5 · 6 · 7 · 8 is divisible by 24

So it seems that the largest power of 2 dividing f (n) is 2n. Now,

let’s prove this by induction.

The base case n = 1 is already done above. Assume that the

result holds for n = k, i.e., that the largest power of 2 dividing

f (k) = (k + 1)(k + 2) · · · (2k) is 2k for some k ≥ 1. Now look at

f (k + 1) = (k + 2)(k + 3) · · · (2k)(2k + 1)(2k + 2)

= [(k + 1)(k + 2) · · · (2k)] ·
[
(2k + 1)(2k + 2)

k + 1

]
= 2(2k + 1)f (k)

Since 2k + 1 is odd, and the highest power of 2 dividing f (k) is 2k,

it follows that the highest power of 2 dividing f (k+1) is 2k+1. This

completes the proof.
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Alternative Solution. Note that

f (n)

2n
=

(n + 1)(n + 2) · · · (2n)
2n

=
1 · 2 · 3 · · · 2n

2n · 1 · 2 · 3 · · ·n

=
1 · 2 · 3 · · · 2n
2 · 4 · 6 · · · 2n

= 1 · 3 · 5 · 7 · · · (2n− 1) .

This is the product of all the odd integers from 1 to 2n− 1.

Exercise 2. Show that for all n ≥ 1, we have f (n) = g(n), where

f (n) = 1− 1

2
+

1

3
− 1

4
+ · · · + 1

2n− 1
− 1

2n

and

g(n) =
1

n + 1
+

1

n + 2
+

1

n + 3
+ · · · + 1

2n
.

Exercise 3.

Prove that every number in the sequence

1007, 10017, 100117, 1001117, 10011117, . . .

is divisible by 53.
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Problem 4.

(a) Consider a circle and l lines in the plane, such that every line

intersects the circle at two distinct points. Let p denote the number

of points strictly inside the circle at which a pair of lines intersect

each other. Also, let r denote the number of regions into which the

circle is divided by the lines. Prove that

r = l + p + 1 .

Solution.

(a) We will first prove that r = l+p+1 by induction on the number

of lines.

The base case l = 0 is trivial; with no lines, there are no points of

intersection inside the circle (p = 0) and the number of regions is

r = 1 (the circle itself).

Suppose the relationship r = l + p + 1 is valid for some number l

of lines. We will show that it remains valid if another line is added.
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Let’s add a new line to the picture. Suppose that it intersects the

other lines at s points inside the circle (note that s could be zero).

These s points of intersection split the new line into s+1 segments

within the circle, and each segment splits an old region into two new

regions.

Thus l increases by 1, p increases by s, and r increases by s + 1.

The formula r = l + p + 1 remains valid since both sides increase

by s + 1.

Therefore, by the principle of induction, the result holds for any

number of lines l ≥ 1.
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(b) Let n be a positive integer. Place n points on the circumference

of a circle, and draw all possible chords through pairs of these points.

Assume that no three chords are concurrent (meet in a single point).

Let an be the number of regions into which the circle is divided. Find

a formula for an.

Solution.

We will use the result from part (a). Here we have:

• By definition, the number of regions is r = an;

• Each pair of points on the circle determines a unique line, so

l =
(
n
2

)
;

• Each set of 4 points on the circle produces a unique intersec-

tion point inside the circle, so p =
(
n
4

)
.

Thus we obtain

an =

(
n

2

)
+

(
n

4

)
+ 1 .
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Problem 5. Every road in Uniland is one-way. Every pair of cities

is connected by exactly one direct road. Show that there exists a

city which can be reached from every other city either directly of via

at most one other city.

Solution. Suppose there are n cities in Uniland. We will prove this

by induction on n, starting with the base case n = 2. So first we

prove that the proposition holds for 2 cities. This is easy since if

there are only two cities A and B with a road from A to B, then

B satisfies the conditions of the problem.

A city satisfying the conditions of the problem will be called a H-

city. Next we assume that the result holds for k cities. This means

that among the k cities there must be a H-city; let’s call it A.

This means that every other city in Uniland has a road going directly

to A (in which case we call it a D-city for A), or else a route going

to A using some D-city X (in which case we call it an N -city for

A). So every city in Uniland is either a D-city or an N -city for A.

Next we add one more city to Uniland, call this city P . We use the

following reasoning:



1313

Case 1: If a road goes from P to A, then P is a D-city for A.

Therefore A is a H-city for the new problem.

Case 2: Let X be a D-city. If there is a road from P to D,

then P is an N -city for A. Therefore A is a H-city for the

new problem.

Case 3: The only other possibility is that roads go from A to

P and from every D-city of A to P . But there is also a direct

road from every N -city of A to some D-city of A. And so P

is a H-city for the new problem.
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Alternative Solution using the “Extremal Principle”.

Let m be the maximum number of direct roads leading into any city,

and let M be a city for which this maximum is attained.

Let D be the set of m cities with direct connections into M .

Let R be the set of all cities apart from M and the cities in D.

If R is empty, then M is the required city. If X ∈ R, then there

is a city E in D such that a road leads from E in D, so that is it

possible to reach M from X via D.

If such a city E did not exist, this would mean that all cities in D

connect directly to X .

Since M also connects directly to X , there are m + 1 direct roads

into X . This is a contradiction, since the maximum number of direct

roads leading into any city is m.

Therefore, every city with the maximum number of entering roads

satisfies the conditions of the problem.

Exercise 4 (BMO Round 1, 1997).

For positive integers n, the sequence a1, a2, a3, . . . is defined by

a1 = 1 and

an =

(
n + 1

n− 1

)
(a1 + a2 + · · · + an−1)

for n > 1. Determine the value of a1997.


