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1 Part 1: 10:00 - 11:00. Integer So-
lutions

1.1 Introduction: Two Problems

Pythagoras Theorem: Let a, b, c be the side lengths of a

right-angled triangle, with c the longest side. Then

a2 + b2 = c2 (1)

A Pythagorean triple (a, b, c) is a solution of equation 1 in

positive integers a, b, c.

Well-known Pythagorean triples are:

32 + 42 = 52

52 + 122 = 132

72 + 242 = 252

82 + 152 = 172

Find a formula to generate all Pythagorean triples.

Cauchy’s Functional Equation: Find all functions f

such that, for all x and y:

f (x + y) = f (x) + f (y)

Such functions are called additive.
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Graphical Demonstration of Pythagoras Theorem
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1.2 Problems involving Pythagorean Triples

A Diophantine problem is an equation, or system of equations,

to be solved in integers. For example finding Pythagorean triples

is a Diophantine problem.

Easy Problem: Show that there are infinitely many Pythagorean

triples.

Obvious Solution: (a, b, c) = (3n, 4n, 5n) for positive inte-

gers n.

A Pythagorean triple (a, b, c) is primitive if there is no integer

d > 2 which is a factor of a, b and c.

Remark 1: Pythagorean triples (3n, 4n, 5n) are primitive

only if n = 1.

Remark 2: If an integer d > 2 is a factor of two sides of a

right-angled triangle, then it automatically divides the third side.

Therefore, to show a Pythagorean triple is primitive, it is enough

to check that any two sides have no common (prime) factor.
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Harder Problem: Are there infinitely many primitive Pythagorean

triples?

One Solution to Harder Problem: Notice that in the

Pythagorean triples 32+42 = 52, 52+122 = 132 and 72+242 = 252,

the longer two sides differ by 1. Can we find infinitely many of

these ?

If such triples exist, they are surely primitive. If an integer

d > 2 is a factor of all the edge lengths, then both b and c = b+1

are multiples of d, which implies d is a factor of 1, a contradiction.

Therefore there is no common factor of b and c.

Suppose then that a2 + b2 = c2 with c = b + 1. Then, substi-

tuting for c:

a2 + b2 = (b + 1)2 = b2 + 2b + 1

Subtracting b2 from each side:

a2 = 2b + 1

In this case, 2b + 1 must be a square number, and indeed an odd

square number. Hence generate Pythagorean triples for all integers

m ≥ 1:

a = 2m + 1

2b + 1 = (2m + 1)2 = 4m2 + 4m + 1

b = 2m(m + 1)

c = b + 1 = 2m2 + 2m + 1 = m2 + (m + 1)2
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A Claim implying Infinitely Many Primitive Triples:

Suppose thatm and n are integers withm < n, no common factor

and not both odd. Then

a = n2 −m2

b = 2mn

c = m2 + n2

is a primitive Pythagorean triple.

Remark: This generalises the previous example by allowing

general n > m in place of n = m + 1.

Proof: It is easy to show that the algorithm produces Pythagorean

triples, as

(m2 + n2)2 = m2 + n2 + 2m2n2

= m2 + n2 − 2m2n2 + 4m2n2

= (n2 −m2)2 + (2mn)2

To see that this is a primitive Pythagorean triple, suppose that

a prime p is a factor both of n2−m2 and ofm2+n2. That implies

also that 2m2 = (m2 + n2) − (n2 − m2) is a multiple of p, as

is 2n2 = (m2 + n2) + (n2 − m2). Since m2 and n2 have (by

hypothesis) no common factor, the only possibility is p = 2. But

that would apply m2+n2 is a multiple of 2, contradicting that m

and n are not both odd, nor both even.

Therefore, as there is no common prime factor, the triple is a

primitive Pythagorean triple.
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Harder Question: Can all primitive Pythagorean triples be

represented as n2 −m2, 2mn,m2 + n2?

To answer this, we need some more number theory. But before

we do that, let us look at Cauchy’s functional equation.

1.3 Cauchy’s Functional Equations

1. Find all functions f : Z → Z such that f (x + y) = f (x) +

f (y) for all x, y ∈ Z.

2. Find all functions f : Q → Q such that f (x + y) = f (x) +

f (y) for all x, y ∈ Q.

3. (The endomorphism problem). Find all functions f : Z → Z
such that f (x + y) = f (x) + f (y) and f (xy) = f (x)f (y)

for all x, y ∈ Z

Z is the set of integers (negative, zero or positive). Q is the

set of rational numbers, that is, the set of numbers that can be

expressed as an integer numerator, divided by an integer (non-

zero) denominator.

The Q stands for quotient while Z stands for Zahl, which is

number in German.
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Solution to Cauchy’s Equation over Z.
The question is to find all functions f : Z → Z such that

f (x + y) = f (x) + f (y) for all integers x, y.

I claim there is some c ∈ Z such that f (x) = cx for all

x ∈ Z>0. That is clearly sufficient to solve the functional equation,

but is it necessary?

To show that f (x) is necessarily a linear function, let us sup-

pose the opposite and derive a contradiction.

Let us suppose f satisfies Cauchy’s functional equation, and

define c = f (1). Now consider the smallest positive integer for

which applying f is not the same as multiplying by c. That small-

est counterexample (if it exists) cannot be 1, as f (1) = c · 1, so
must be at least 2. Let us call that smallest counterexample x+1,

so that f (x + 1) ̸= c(x + 1). As x + 1 is the smallest counterex-

ample, then x is not a counterexample and f (x) = cx. But now

Cauchy’s functional equation implies f (x+1) = cx+c = x(x+1)

contradicting the assumption thatf (x + 1) ̸= c(x + 1). As there

is no smallest counterexample, there can be no counterexample at

all, and so f (x) = cx for all positive integers x.

Now it remains to sweep up zero and negative numbers.

Putting y = 0 gives f (x) = f (x) + f (0), implying f (0) = 0.

Putting y = −x forx > 0 gives f (0) = f (x) + f (−x) so

f (−x) = −f (x) = −cx

This proves that all solutions f : Z → Z of Cauchy’s functional

equation are the linear functions f (x) = cx.
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Solution to Cauchy’s Equation over Q.

I claim that if f : Q → Q satisfies Cauchy’s functional equa-

tion, then f (x) = cx for some c ∈ Q and all x ∈ Q.

The proof is similar to the proof over Z. Show that for all

p ∈ Z and q ∈ Z>0

f

(
p

q

)
= pf

(
1

q

)
Then set p = q with c = f (1) to complete the proof.

Graph of y = x2 for various Number Sets:
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1.4 Integers, Primes and Factors

Youmight seeN for the natural numbers, sometimes {0, 1, 2, 3 . . .}
or {1, 2, 3 . . .} but there is no agreement on whether N includes

zero. If you use N (not recommended) be sure to state clearly

whether you mean Z>0 or Z≥0.

Given two positive integers x and y, we say that x is a factor

of y if there exists another positive integer z such that y = xz.

A prime number is a positive integer which has exactly two fac-

tors: 1 and itself. The number 1 (a unit) is not considered a

prime number. Positive integers that are not 1 and not primes are

composite.

Two positive integers x and y are co-prime or relatively prime

if they have no common factor besides 1.

Fundamental Theorem of Arithmetic:

1. Every integer n ≥ 2 is a product of one or more (not neces-

sarily distinct) prime numbers.

2. The prime factorisation is essentially unique, ie two different

factorisations contain the same primes, raised to the same

powers, but perhaps in a different order.

Proof of 1. Suppose the opposite holds, and there exists

a positive integer n which is not a product of primes. Take the

smallest such n.

Then either n is prime, or it is not.

If n is prime then it is a product of the one prime, itself.
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If n is composite, then it has a prime factor p > 1. As n is the

smallest positive integer not a product of primes, then the integer

n/p is a product of primes. But then n = p×n/p is a product of

primes, a contradiction.

Proof of 2. Not provided here. Most solutions use Bézout’s

identity and Euclid’s lemma. Look them up on Wikipedia.

1.5 Describing all Primitive Triples

Claim: The formula (n2−m2, 2mn,m2+n2) for relatively prime

m < n generates all Pythagorean triples.

Proof: First note that if (a, b, c) is a primitive Pythagorean

triple, then one of (a, b) is even, and the other odd.

It is clear they cannot both be even, as that would contradict

the triple being primitive.

To see why a and b cannot both be odd, we notice that squares

of any integer must be either multiple of 4, or one more than a

multiple of 4 (why?). Therefore the sum of two odd squares leaves

a remainder of 2 on division by 4, and cannot be a square. Thus,

one of a, b must be odd, the other even.

Without loss of generality, let us suppose that a is odd and b

is even, which implies c is also odd. The Pythagorean equation

then becomes:(
b

2

)2

=
c2 − a2

4
=

(
c− a

2

)(c + a

2

)
(2)

Now, it cannot be the case that
c− a

2
,
c + a

2
have a common
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prime factor, because, if they did, then c and a would both be mul-

tiples of that prime factor, contradicting (a, bc) being a primitive

triple.

Now factorise
b

2
into a product of primes using the fundamental

theorem of arithmetic. Squaring that product, all primes are raised

to an even power. As the two factors on the right hand side have

no common prime factor, and as the left hand size is a perfect

square, then every prime on the right hand side is also raised to

an even power. This implies that the factors on the right-hand

side must also be perfect squares. Let us then write:

m2 =
c− a

2
;n2 =

c + a

2

This finally gives the representation a = n2 − m2, c = m2 + n2

and so b = 2mn, proving the claim.

Question: Can all Pythagorean triples (not necessarily prim-

itive) be represented as n2 −m2, 2mn,m2 + n2 for some integers

m, n?

Answer: No. Counter-example (9, 12, 15).

1.6 Related Problem: Squares in Arithmetic
Progression

Show there are infinitely many relatively-prime positive integer

triples (x, y, z) such that x2, y2, z2 is an arithmetic progression.
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Hint: As z2 − x2 = 2(y2 − x2) so x, z are of the same parity

(both odd or both even) so we can write x = b− a and z = a+ b.

Now reduce this to a problem of Pythagorean triples.

1.7 Just for Completeness:
Real Numbers

R is the set of real numbers that is, the set of rational numbers

and limits of rational numbers. Adding limits is a common idea

in mathematical analysis, called completing a (metric) space.

For example, a right angled triangle with side lengths 1, 1 and√
2. All these edge lengths are real numbers. But

√
2 is not a

rational number. It is an irrational number. The same is true of

π = 3.14159265... (proofs of irrationality not included here).

It is possible to approximate
√
2 arbitrarily closely with ratio-

nal numbers. For example, let a0 = 2 and, for n ∈ Z≥0 define

an+1 =
an
2
+

1

an
It is easy to see that the sequence (an : n ≥ 0) are all rational

numbers. Numerical calculations appear to converge to a limit

(this is called iteration):

n 0 1 2 3 4 5

an 2 1.5 1.416666667 1.414215686 1.414213562 1.414213562

The limit should satisfy:

a =
a

2
+

1

a
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Subtracting
a

2
from each side gives

a

2
=

1

a

Multiplying each side by 2a gives a2 = 2, so a =
√
2 given

that a > 0. This iteration is the algorithm most computer chips

use to calculate
√
2.

More than this, it is possible to approximate any real number

arbitrarily closely with rational numbers. In mathematical terms,

the rational numbers Q are dense in the real numbers R. There
is no interval of the real numbers, of length > 0, which does not

contain a rational number.

The integers Z are not dense in R. That is because we cannot
approximate real numbers arbitrarily closely with integers. The

closest integer to π is 3, and we can get no closer.

Pythagorean triples in R are not interesting. We can pick any

a, b > 0 and write c =
√
a2 + b2.
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2 11:30-12:30 Solutions in Z
[√

2
]

2.1 The Ring Z
Algebraists say the set Z of integers is a ring because:

� It is closed under addition and subtraction.

� It has an additive identity, 0.

� It is closed under multiplication.

� It has a multiplicative identity, 1.

The sets Q, R are also rings, but they are special kinds of rings

which are also closed under division (except by 0).

The set Z>0 is not a ring, because it is not closed under sub-

traction.

Algebraists can construct more general rings (not considered

here) which are not subsets of R, but where addition and multi-

plication follow certain rules (axioms).

Question: How many theorems involving Z apply to rings in

general?

15



2.2 The Ring Z
[√

2
]

Consider the set: Z
[√

2
]
⊂ R, defined as:

Z
[√

2
]
=
{
u + v

√
2 : u ∈ Z, v ∈ Z

}
Algebraic Properties of Z

[√
2
]

Some properties in common with Z:

� Contains 0 and 1

� Closed under addition:

u + v
√
2 + w + x

√
2 = u + v + (v + x)

√
2

� Closed under multiplication:

(u + v
√
2)(w + x

√
2) = uw + 2vx + (ux + vw)

√
2

So Z
[√

2
]
is also a ring.

But there are also some differences from Z:

� Z
[√

2
]
has many units, that is elements u ∈ Z

[√
2
]
such

that u−1 ∈ Z
[√

2
]
. Examples:

√
2− 1

√
2 + 1

1−
√
2 −1−

√
2

±(
√
2− 1)n ±(

√
2 + 1)n

� In contrast, the only units in Z are ±1.
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Topological Property The set Z
[√

2
]
is dense in R.

Why? Take a real number x and a positive integer k.

Then there is an integer n, depending on k, such that:

n ≤
(√

2 + 1
)k

x < n + 1

It follows that:(√
2− 1

)k

n ≤ x <
(√

2− 1
)k

(n + 1)

Both the left hand side and the right hand side are elements of

Z
[√

2
]
. By making k large (so in general n also becomes large)

we can find elements of Q
[√

2
]
as close as we wish to any real x.

2.3 Some Simple Questions in Z
[√

2
]

1. Distinctness: If u+v
√
2 = w+x

√
2 for u, v, w, x ∈ Z, does

it follow that u = w and v = x?

2. How can we tell if u+ v
√
2 ∈ Z

[√
2
]
is a square number in

Z
[√

2
]
?

3. Is π ∈ Z
[√

2
]
?

An informal description of the distinctness criterion is as fol-

lows. Suppose we have a million numbers written in an array with

1000 rows and 1000 columns. In column u and row v write the

numberu+ v
√
2. Are all those million numbers different, or could

the same number appear more than once?

17



Distinctness Proof: Write the equation as:

u− w = (x− v)
√
2

If one side is non-zero, then both sides are non-zero, but that would

imply √
2 =

u− w

x− v

contradicting the irrationality of
√
2. Therefore, u + v

√
2 = w +

x
√
2 for u, v, w, x ∈ Z only if u = w and v = x.

Detecting Squares: When is u+ v
√
2 a square in Z

[√
2
]
?

Solution: If u + v
√
2 = (a + b

√
2)2 then u = a2 + 2b2 and

v = 2ab. It then follows that:

u2 − 2v2 = a4 + 4a2b2 + 4b4 − 8a2b2 = (a2 − 2b2)2

In particular, the left-hand-side is a square number in Z. It follows
that

a2 =
1

2

(
u±

√
u2 − 2v2

)
b2 =

1

4

(
u∓

√
u2 − 2v2

)
If any combination of ± gives square numbers on the left hand

side, then u + v
√
2 is square in Z

[√
2
]
.

It is MUCH harder (not included) to show that π /∈ Z
[√

2
]
.
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2.4 Finding Pythagorean Triples in Z
[√

2
]

If we can choose a, b, c ∈ Z
[√

2
]
, there are more Pythagorean

triples. For example, the isosceles right-angled triangle:

12 + 12 = (
√
2)2

Armed with a squareness test, we find more by trial-and-error:

12 + (2
√
2)2 = 33

(2
√
2− 1)2 + (4 + 4

√
2)2 = (7 + 2

√
2)2

(6
√
2− 3)2 + (2

√
2)2 = (9− 2

√
2)2

2.5 Functional Equations in Z
[√

2
]

1. Find all functions f : Z
[√

2
]
→ Z

[√
2
]
such that f (x +

y) = f (x) + f (y) for all x, y ∈ Z
[√

2
]
.

2. Find all endomorphisms f : Z
[√

2
]
→ Z

[√
2
]
such that

f (x + y) = f (x) + f (y) and f (xy) = f (x)f (y) for all

x, y ∈ Z
[√

2
]
.

Solution: For part 1, there must be c, d ∈ Z
[√

2
]
such that

f
(
u + v

√
2
)
= cu + dv

Then applying part 2 with x = y = 1 gives c = c2, so c = 0 or

c = 1. Applying part 2 with x = y =
√
2 gives 2c = d2.

This leads to three endomorphisms (all of which work for gen-

eral x, y):
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Function c d

Zero 0 0

Identity 1
√
2

Conjugate 1 −
√
2

Note that the conjugate function is not of the form f (x) = cx for

some c ∈ Z
[√

2
]
. Conjugation is self-inverse (an involution).

The fact that conjugation is an endomorphism implies that

if x ∈ Z
[√

2
]
satisfies an algebraic equation with integer coeffi-

cients, then so does the conjugate of x.

Graph of the Conjugate Function
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2.6 Factorisation in Z[
√
2]

� We say x ∈ Z
[√

2
]
is a factor of y ∈ Z

[√
2
]
if there is

another z ∈ Z
[√

2
]
such that y = xz.

� What does it mean to say p ∈ Z
[√

2
]
is prime? Answer:

only factors of p are

– p

– All units

– p multiplied by any unit.

� Which primes p ∈ Z are also primes in Z
[√

2
]
? Not p = 2,

because 2 =
√
2
2
. And not p = 7 =

(
3−

√
2
) (

3 +
√
2
)

and not 17 =
(
5− 2

√
2
) (

5 + 2
√
2
)
. On the other hand it

can be shown that 3, 5, 11, 13 are prime in Z
[√

2
]
.

� Can every n ∈ Z
[√

2
]
be expressed as a product of primes?

What goes wrong when you try to adapt the proof for Z?

� Are prime factorisations unique? Yes, but hard to prove.

� Say x, y ∈ Z
[√

2
]
are co-prime if the only common factors

of x and y are units. That allows the definition of primitive

Pythagorean triples.

Interesting fact: It is not yet known in general for which

positive (non-square) integers d the ring Z[
√
d] has unique fac-

torisation into primes, or even if there are infinitely many such

d.
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