Eat your way to Better Bones - more than vitamin D

TUDA BONE COHORT

Dr Miriam Casey

Consultant Physician and Geriatrician St James Hospital Dublin

- Osteoporosis estimated to affect over 200 million people worldwide
- Osteoporosis increases the risk of fractures, increased mortality, increased morbidity, losses in health-related quality of life
- In daily practice non-compliance is a significant problem with calcium and vitamin D supplementation (approx 50%)
- This provides a rationale for supporting a more food-oriented preventive approach of osteoporosis.

Hospitalisations for fracture and associated costs between 2000 and 2009 in Ireland: a trend analysis *B McGowan, M C Casey et al , Osteoporos Int 2012*

Fig. 2 Projection of future numbers of all osteoporotic-type fractures in Ireland from 2009 to 2025

Bone Formation and Resorption

Calcium Nutrition is Poor in the Elderly

Dietary calcium intake in Americans aged 60-74 (NHANES 1999-2000)

	Breakfast	Semi skimmed milk(100mls)	215mg
		50g Muesli	
		30ml milk in Tea /coffee	
	Mid am	Low fat Yoghurt (125g)	175mg
	Lunch	Cheese (30g) in sandwich	cheddar (220mg)
		OR Tinned salmon (100g)	
			Wholemeal bread –
			2 slices (200mg)
		watercress salad (50g)	90mg
	Dinner	Include kale (100g)	150mg
		/Okra (100g)	220mg
		/Baked beans	53mg
N		Glass Of milk	240mg
	Dessert	Rice Pudding /	100mg
5		Ice Cream (100g)	
an .		1 '	

Divided into tertiles based on Milk intake :

→ Lowest tertile had lowest HIP BMD (m+fm)

Vitamin D levels, physical activity and fractures in the prospective OPRA Study of Elderly Women

	25(OH)D	25(OH)D	
	< 50 nmol/L <i>n</i> =43	> 50 nmol/l <i>n</i> = 943	Р
Hours outdoors/day	1.9 ± 1.2	2.8 ± 1.3	< 0.001
Activity level (1–8) ^a	4.8 ± 1.6	5.7 ± 1.0	< 0.001
Fractures	9 (21%)	110 (12%)	0.039

The Relationship between Dietary protein and BMD

• Longitudinal Studies:

Framingham Osteoporosis Study Significant increases in BMD 855 older subjects followed for 4 years

Beneficial effect noted when total protein intake exceeds:

1gm/kg/day

Recommended Protein intake for Elderly female weight 66kg@1gm/kg/day Approximately 66g protein

Breast Chicken - 24g

Handful nuts - 10g

Glass of milk- 6g

Tuna sandwich - 13g

<u>Egg -7g</u>

<u>Yoghurt - 6g</u>

Ramirez 2012

Observational study elderly > 65y with OP fractures +controls

Higher Animal protein intake in controls (p<0.04)

Fracture Risk when Animal/vegetable ratio >1.2 greatest when ratio > 3.0

• IOWA study fm aged 55 - 69 followed for 104, 000 person years

RR of hip fracture across increasing quartiles of Animal protein Highest Quartile RR 0.31, p for trend 0.037 Osteoporos Int (2013) 24:139-150 DOI 10.1007/s00198-012-1998-6

ORIGINAL ARTICLE

Dairy foods and osteoporosis: an example of assessing the health-economic impact of food products

F. J. B. Lötters • I. Lenoir-Wijnkoop • P. Fardellone • R. Rizzoli • E. Rocher • M. J. Poley

Dairy foods and osteoporosis: Lotters et al Osteoporos Int (2013) 24:139–150

- Constructed a model that generated the number of hip fractures that potentially can be prevented with increased dairy foods intakes,
- costs avoided
- costs of additional dairy foods (1 glass of milk , 1 yoghurt, 30 grams cheddar),
- number of disability-adjusted life years (DALYs) lost due to hip fractures associated with low nutritional calcium intake
- France, Sweden and the Netherlands

 Parameter	Netherlands	France	Sweden
% low Ca intake (<600mg)	8%	40%	31%
Rec intake of Ca in elderly / day	1,300mg	1,300mg	1,300mg
Incidence of hip fractures (per 1,000 > 50 yrs)	54	35	65
Size of the general Population	5.6 million	21.7million	3.4 million
Relationship between ↓Ca intake and hip fractures RR (95% CI)	1.08 (1.02-1.16)	1.08 (1.02-1.16)	1.08 (1.02-1.16)
Cost of hip fractures			
First Yr after fx	€129k	€115k	114K
Subsequent yrs	€23k	€50k	€51k
Daily Cost of Dairy foods- intervention	€0.44	€0.64	€0.68

Potential Impact Fraction

Cost avoided through improved dairy foods consumption

The burden of hip fractures in relation to \Downarrow Ca Intake

(Disability Adjusted Life Years Lost)

Fig. 3 DALYs lost, representing the burden of hip fractures in relation to low calcium intake

Results of Model when applied to 3 countries

- Potential Prevented Hip Fractures per year:
 - France:2,023Sweden455Netherlands132.
- DALYs not lost per year: France 6,263
 Sweden 1246
 Netherlands 374.
- Total costs potentially avoided
 - 129 million, 34 million, and 6 million Euros, respectively.
- Net benefits on future health and utilization of healthcare

Hip fracture incidence/100,000 men and women > 50 years in EU 27

Fig. 24 Hip fracture incidence/100,000 in men and women above 50 years standardized to the EU27 population

Baseline Characteristics of Bone Cohort (n = 3501)

	All (<i>n</i> 3501)	Hip fracture (<i>n</i> 138)	No Hip fracture (<i>n</i> 3356)	P value
% Male (n)	32.6 (1142)	23.2 (32)	33.0 (1107)	<0.001
Weight (kg)	74.0 (62.2,85.0)	62.0* (54.5,77.0)	74.0 (63.0,86.0)	<0.001
BMI (kg/m²)	27.8 (24.7,31.20	25.4* (22.1,29.3)	27.9 (24.8,31.2)	<0.001
Biochemistry				
Serum Calcium	2.33 (2.24,2.42)	2.33 (2.25,2.41)	2.33 (2.2,2.42)	0.761
Phosphate	1.03 (0.89,1.16)	0.97* (0.84,1.10)	1.03 (0.90,1.16)	0.001
Albumin	42.0 (40.0,45.0)	41.0* (38.7,44.0)	42.0 (40.0,45.0)	<0.001
eGFR (mL/min)	71.7 (57.8,87.2)	56.2* (41.4,69.5)	72.2 (58.5,87.6)	<0.001
25(OH)D (nmol/l)	56.5 (36.8,81.4)	70.9* (41.5,69.5)	56.1 (36.8,80.9)	<0.001
PTH (pg/ml)	37.2 (27.5,49.3)	36.3 (28.4,56.1)	37.2 (27.5,49.2)	0.477

Vitamin D status in TUDA Bone Cohort n= 3501

*Institute of Medicine bone health cut-offs (2010)

Bone Densitometry results median (inter-quartile range)

	All	Hip fracture	No Hip fracture
	(<i>n</i> 3501)	(<i>n</i> 138)	(<i>n</i> 3356)
Total hip BMD	0.903	0.722 *	0.908
	(0.797,1.022)	(0.636,0.822)	(0.80,1.027)
Total hip T-score	-1.0	-2.5 *	-1.0
	(-1.8,-0.1)	(-3.0,-1.6)	(-1.7,-0.1)
Femoral neck BMD	0.832	0.710	0.837
	(0.748,0.926)	(0.644,0.774)	(0.754,0.933)
Femoral neck T-score	-1.4	-2.4 *	-1.4
	(-2.1,-0.7)	(-2.8,-1.8)	(-2.0,-0.7)
Vertebral BMD	1.004	0.932 *	1.007
	(0.874,1.170)	(0.795,1.121)	(0.877,1.173)
Vertebral T-score	-1.5	-2.1 *	-1.5
	(-2.6,-0.2)	(-3.2,-0.6)	(-2.5 <i>,</i> -0.2)

* p<0.001

TUDA Bone Cohort: Smoking and hip Fracture Risk

	(<i>n</i> =3501)	(<i>n</i> =138)	(<i>n</i> =3356)	P-value
	47.1	44.9	47.2	
moking; Never % (n)	(1649)	(62)	(1583)	<0.001
	12.3	22.5	11.9	<0.001
Current % (n)	(432)	(31)	(400)	

Prevalence of obesity among adults aged 65 and over, by sex: United States, 2007–2010

Significantly different from 75 years and over.

SOURCE: National Health and Nutrition Examination Survey, 2007–2010.

BMI and prevalence of Osteoporosis

Milk Consumer: 98.6% 42% (n = 1445) said they had Milk as a drink How often milk as a drink (%) 45 40.2 40 35 30 25.5 ×25 20 14.8 15 7.8 10 6.6 5.1 5 0 B.A. TWICE. MCELDAY 1.2... ·.. ن

80.5% (n = 2767) said they had Milk with a Cereal

63.7% (n = 2227) said they consumed Yoghurt

Meat 96.8% (n = 3389) consumed it How often consumes meat 45 38.3 40 35 30 * ²⁵ 22.9 21.6 20 13 15 10 2.3 1.8 5 0 5-6 times week 3-A times week Twice dayImore 1-2 times week Loncelweet oncelday

Poultry 96.2% (n = 3249) said they consumed it

Oily Fish 63.2% (n=2209) said they consumed it 70 62.1 60 50 * ⁴⁰ 32.3 30 20 5.1 10 0.5 0 0.1 0 5.6 times week 1.2 times week 3-A times week Twice dayImore Loncelweet oncelday

Summary:

Overall consumption of Dairy products and Animal Protein as per food pyramid in Elderly osteopaenic patients sub optimal.

Public Health policies for Ireland

Worldwide: <u>\$14 billion</u> in savings on the healthcare costs for osteoporosis (*limited to treating fractures*) if recommended quantities of dairy produce taken

THE DEPARTMENT OF AGRICULTURE, FISHERIES & FOOD AN ROINN TALMHAÍOCHTA. IASCAIGH AGUS BIA

At TCD / SJH

- •Anne Molloy
- •Bernard Walsh
- •Eamon Laird
- Conal Cunningham
- Kevin McCarroll
- •Martin Healy
- •Gerry Cox
- Sinead McNiffe
- •Helen Toohey
- •Regina Dempsey
- •Karen Creevey
- Tracey Claxton

- Clare O'Donovan
- Michelle Clarke
- Catherine McGarel
- Niamh Aspell
- Helena Gibbons
- Joyce Earlie

At UU

- •Helene McNulty
- Sean Strain
- Mary Ward
- •Leane Hoey
- •Geraldine Horigan
- •Julie Wallace
- Shauna Harte
- •Paula Tighe
- •Mary McCann
- •Liadhan McAnena
- •Julie Sittlington
- •Kim Martin
- Ingrid Love
- Catherine Hughes
- •Adrian McCann

