TRENDS IN FOOD AND NUTRIENT INTAKES IN IRELAND

Janette Walton PhD

School of Food & Nutritional Sciences, UCC

Irish Universities Nutrition Alliance

www.iuna.net

Dietary surveys of Irish adults (18-64y)

National Adult Nutrition Survey (NANS) (2008-2010)

- 4-day semi-weighed food diary
- Nutrient intake estimated using UK food composition tables updated with Irish data
- Anthropometry (measured)

North South of Ireland Food Consumption Survey (NSIFCS) (1997-1999)

- 7-day estimated food diary
- Nutrient intake estimated using UK food composition tables updated with Irish data
- Anthropometry (measured)

Irish National Nutrition Survey (INNS) (1988-1989)

- 7 day diet history
- Anthropometry (measured)

Change in Body Mass Index (BMI)

Boylan et al. 2013 PHN (In press)

Change in Weight Status Men (18-64y)

■ Normal (18.5-24.9 kg/m2) ■ Overweight (25.0-29.9 kg/m2) ■ Obese(\geq 30kg/m2)

Boylan et al. 2013 PHN (In press)

Change in Weight Status Women (18-64y)

■ Normal (18.5-24.9 kg/m2) ■ Overweight (25.0-29.9 kg/m2) ■ Obese(\geq 30kg/m2)

Boylan et al. 2013 PHN (In press)

Change in Food Intake between NSIFCS(1997-99) and NANS (2008-10)

Change in patterns of bread intake (g/d)

Change in patterns of breakfast cereal intake (g/d)

Change in patterns of milk intake (g/d)

Change in patterns of fruit & vegetable intake (g/d)

Change in macronutrient intake

■ NSIFCS (1997-99) ■ NANS (2008-10)

Change in dietary salt intake (g/d)

Mean daily salt intake (dietary)

Urinary data NANS: Additional intake of 25-30% from discretionary salt

Changes in dietary salt sources

Food group	NSIFCS 1997-99	NANS 2008-10	Difference
	Salt intake (g/d)		
Breads	2.10	1.50	↓ 0.60
Cured/processed meats	1.68	1.33	↓ 0.35
Spreading fats	0.48	0.23	↓ 0.25
Ready-to-eat breakfast cereals	0.35	0.23	↓ 0.10
Milk/milk products	0.68	0.60	↓ 0.08
Processed vegetables/veg dishes	0.10	0.28	↑0.18
Savouries including pizza/pasta dishes	0.24	0.33	10.09

Change in Dietary Fibre intake (g/d)

^{*} Denotes significant difference P<0.05

Dietary Fibre adequacy(NANS)

EFSA 2010 recommendation of Dietary Fibre Intake≥25g/d

Excludes under-reporters for energy

Bannon 2011 PhD thesis

Change in micronutrient intake between NSIFCS(1997-99) and NANS (2008-10) **Men**

Change in micronutrient intake between NSIFCS(1997-99) and NANS (2008-10) Women

Vitamin D intake and adequacy

NANS (18-64y)			
	% population (18-64y)		
Intake <10µg (IOM, 2010)	93%		
Intake < 5µg	73%		

Vitamin D status (NANS 2008-10)(18-64y)

Cashman et al. (2013) Br J Nutr, 109, 1248-56.

Iron intake & status(women 18-50y)

NANS (dietary & biochemical data)		
Inadequate intake (% <ear)< th=""><th>53%</th></ear)<>	53%	
Low Hb levels	8%	
Low Fe stores	14%	
Fe deficiency	4%	

Folate intakes(women 18-50y)

Compliance with the folic acid supplementation recommendation of 400µg is low (6%)

This additional intake of 59µg may result in approx 13% reduction in risk of NTDaffected births*

*estimated by linear extrapolation as per (Daly et al 1997 The Lancet 350,1666-1669)

Conclusions

 \square \uparrow in prevalence of obesity in both men and women

- ↑ trend in intake of breakfast cereals, 'rice, pasta & savouries' and yoghurts
- $\Box \downarrow$ trend in intakes of bread, milk & spreading fats

No change in intakes of meat, fruit, vegetables or alcoholic beverages

Conclusions

 $\Box \downarrow$ in intake of fat-still higher than recommended

- $\Box \downarrow$ in intake of salt but still higher than recommended
- \square DF intakes inadequate for both men and women with intakes \checkmark for men
- ↑trends in micronutrient intake
 Nutritional supplements
 Fortified foods
- Vit D (men and women) and iron and folate (women of childbearing age) still of public health concern

Acknowledgements

IUNA survey teams in UCC, UCD and UU led by Prof Albert Flynn, Prof Mike Gibney & Prof Sean Strain

This work was funded by the Department of Agriculture, Food and the Marine and the HRB under their joint Food for Health Research Initiative (2007-2012).

