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Abstract

Perhaps more than any other product, beer evokes the place it was made. Weißbier

and Germany, dubbels and Belgium, and most of all, Guinness and Ireland. Part of

what makes these beers so memorable is what sets them apart and gives them their

‘taste of place’. Many studies have tried to place that taste, and due to a lack of detailed

data, have relied largely on qualitative methods to do so. We introduce a novel data

set of regionalized beer recipes, styles, and ingredients collected from a homebrewing

website. We then turn to the methods of evolutionary economic geography to create

regional ingredient networks for recipes within a style of beer, and identify which

ingredients are most important to certain styles. Along with identifying these keystone

ingredients, we calculate a style’s resiliency or reliance on one particular ingredient.

We compare this resiliency within similar styles in different regions and across different

styles in the same region to isolate the effects of region on ingredient choice. We find

that while almost all beer styles have only a handful of key ingredients, some styles

are more resilient than others due to readily available substitute ingredients in their

region.

1Corresponding author: rhynes57@gmail.com
2Hynes and Davies: School of Economics, University College Dublin; Buarque and Kogler: Spatial Dy-

namics Lab, University College Dublin
We thank participants at the UCD/UCLA Seminars in Economic Geography Series for useful comments.
All errors are our own.
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1 Introduction

When we think about beer, we think about location; dubbels and Belgium, Weißbier

and Bavaria, Guinness and Dublin. In an era of globalization, why do we still have

these distinctions? Is there something about the way these beer styles are made that

make them ‘local’ to a region, even though they are produced all over the world? If

the answer to this is yes, then geography clearly still matters for brewing.

To investigate the link between styles, ingredients, and places, we borrow economic

geography’s approach to studying knowledge and place. In that literature, the co-

occurrence of technological codes on patents is frequently used to regionalize knowledge

networks and link technological combinations to place (Feldman et al., 2015; Rigby,

2015). We use information on beer recipes in a similar way. Just as technologies

are combined into a patent, ingredients are combined in a beer recipe. Like regional

knowledge networks, we create regional style networks by attributing a style to its

traditional place of origin (e.g. American IPA or Kölsch). This mapping allows us to

compare close styles across different physical locations (with American versus English

IPA our illustrative example) as well as across different styles within the same physical

location (with a comparison of Kölsch and Munich Helles as our example).

This exercise reveals several insights. First, the ingredient network is far closer

within regions than within styles. In other words, different styles within the same

country like German pale ale Kölsch and lager Helles have greater overlap in ingredients

than styles within the same family, like the American and English versions of IPA. This

suggests that even in a globalized world, local ingredients play a critical role in the

distinction of a style of beer, providing some evidence behind the desire to attribute

authenticity to a physical location via appellations.

In addition, our analysis measures which ingredients are central to a style’s defini-

tion, how resilient a style is to losing those ingredients, and how a regional dearth or

abundance of ingredients influences a style’s development. This analysis provides an

empirical basis for discussing concerns such as the susceptibility of some crops to pests
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or climate change and the knock-on implications for the sustainability of certain beer

styles (Yool and Comrie, 2014). We thus contribute to the existing literature on the

geography of beer by bringing this detailed data set to bear on a classic question of the

importance of place. We also contribute to the literature on Evolutionary Economic

Geography (EEG) by applying its methods to product-level data and identifying how

intermediate components and their sources affect product resilience.

There is a large body of existing literature discussing the regional aspects of beer.

Mittag (2014) considers the development of geographic appellations of beer from their

origins as brewery names to their inclusion as distinct styles in the official Beer Judges

Certification Program (BJCP) Style Guide. These appellations and styles are an im-

plicit acknowledgement that for its seemingly large variety, a majority of the world’s

beer styles originate from only a handful of countries. In short, Mittag’s assertion

is that place is critical to beer. Yool and Comrie (2014) qualitatively consider this

concept and the unique combination of ingredients that give beer its ‘taste of place’,

warning that climate change could threaten beer ingredients in sensitive growing re-

gions. Kind and Kaiser (2020) voice similar concerns over Germany’s Hallertau region,

and note the general sensitivity of hops to extreme weather. Knudson et al. (2020)

chronicle the dominance of the Pacific Northwest in US hop production, but also note

recently renewed production efforts in several other US regions as demand for more

local ingredients increases. We provide rigorous empirical evidence in support of these

conclusions. Sewell (2014) provides a historical summary on the spatial diffusion of

beer from its origins in the Fertile Crescent, to Ancient Rome, Europe, the United

States, and to modern times with the rise of microbreweries.

Microbreweries are an especially well-studied topic in the literature. Microbreweries

represent the combination of innovation, entrepreneurship, and rapid growth. Elzinga

et al. (2015) chart the growth of the American craft beer industry from 1979-2012,

noting that craft breweries tend to appear in geographic clusters. Dennett and Page

(2017) reach similar conclusions, and find that two distinct geographic clusters drove

the recent expansion in the London craft brewing industry. Wojtyra et al. (2020) find
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the same clustering of microbreweries in hot spots they identify in Eastern Europe.

Why do these microbreweries gather in one location? Is it access to trade, small

business-friendly incentives, or ingredients? Flack (1997) provides one possible answer:

neolocalism. The sense of place craft beer evokes is its main differentiator and selling

point. Gatrell et al. (2018) go one step further and suggest that craft and microbrew-

eries use “place, practice, and region” to create a strong spatial brand that is appealing

to consumers. Cabras and Bamforth (2016) note that consumers often associate local

craft breweries with higher quality beer, even when those breweries actually lag behind

their larger counterparts in quality control and consistency. Microbreweries clearly rely

on place to differentiate their brand and their products. It appears that the same is

true for styles as well. Yet for all this research on beer and place one crucial ingredient

is missing - the ingredients themselves. This is the gap we fill.

There has yet to be an empirical study of beer ingredients and regional variation.

That is likely because it is difficult to get relevant and inclusive data on the subject.

Our first contribution is assembling data on beer recipes, styles, ingredients, and their

locations. We use nearly 100,000 recipes created by home brewers, craft brewers, and

microbreweries. We normalize these recipes and extract ingredients, styles, and their

locations to create ingredient networks for each unique style of beer. These networks

allow us to quantitatively explore what sets beer styles apart, and to see if there is

a central ingredient responsible for a given recipe’s ‘taste of place’. We do so by

borrowing techniques from EEG and constructing style networks composed of all the

recipes and ingredients used in beers of a given style.

Our second contribution plots beer in space, and considers which keystone ingre-

dients separate and define different styles. We compare our beer style networks with

one another to identify which ingredients are most central to a given style network and

therefore define the style. This contribution is a novel application of EEG methods,

which typically utilize patent, publication, or skills data as opposed to product-level

indicators in generating knowledge networks (Clark et al., 2003; Kogler, 2016). Ex-

panding these methods is crucial to advance the field as a whole because knowledge
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exists not just in the ivory tower, but also in the everyday products all around us.

Even something as deceptively simple as beer is full of complex relationships and is

ripe for detailed analysis.

We take inspiration from the knowledge space methodology of Kogler et al. (2013,

2017) and Buarque et al. (2020) which maps patent technology codes in space and create

regional knowledge networks. We instead create style networks, where individual nodes

are ingredients used in a style and edges are any two ingredients’ co-occurrence with

one another within recipes. Styles themselves have strong historical ties to specific

regions, and are often named after and incorporate ingredients from the specific region

where the style was first produced. The historical origins of styles provide our link

between styles and their recipes and geographic regions. We are the first to apply

this analysis to recipe data, and hope that this novel application inspires others to do

likewise.

We are able to create highly detailed recipe-style networks because we collect the

weights and measures of individual ingredients within a recipe. These allow us to

properly weight edges between ingredients based on their relative proportions within

the recipe.1 After preparing these data, the network algorithm minimizes total network

path length, placing the most important and frequently used nodes at the center of the

network. We can then easily measure which of the ingredients is the most important to

a region. We can also observe how resilient a given style is to the loss of key ingredients,

something forewarned by Yool and Comrie (2014) as well as Kind and Kaiser (2020).

We measure resilience by deleting key ingredients from the network and observing

changes in overall network characteristics.

While this network analysis tells us which ingredients are most important to a net-

work and which ingredients set regional styles apart, we are also interested in how

geography shapes a style’s resilience and reliance on ingredients. We turn to the con-

1Note that most EEG analyses are unable to identify the relative importance of an ingredient in the
development of a novel product or process, for example, the varying importance of individual technology
codes listed on a single patent document. We are able to do so in the present study because we capture the
weight and volume of ingredients.
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cepts of relatedness and unrelated variety to measure both breadth of ingredients a

style uses, as well as the depth of those ingredients’ potential substitutes (Whittle and

Kogler, 2020). We find that New World styles generally make use of a larger variety of

easily substituted ingredients and are much more resilient than Classic styles because

of this.

In summary, we bring highly-detailed micro-data to longstanding questions in the

geography of beer literature. We also marry this literature with analysis from EEG

and innovation studies. In doing so we shed light on old questions and pave the way

for others to ask and answer new ones.

The rest of this paper proceeds as follows: Section 2 discusses how we fetch, parse,

and normalize the recipe-level data. Section 3 transforms recipe ingredient data into

style networks. Section 4 introduces eigenvector centrality, our main measure of ingre-

dient importance. Section 5 details our targeted deletion strategy. Section 6 defines

the ability of certain styles to weather losses of key ingredients. Section 7 posits that

geography and the abundance of ingredients is a key determinant of resiliency. Section

8 concludes.

2 Data Collection and Mapping

We gather data on 126,256 beer recipes and map them to individual styles, which

in turn can be historically linked to countries, regions, and even cities. We use the

authoritative BJCP Style Guide to define broad styles of beer, then match beer recipes

to styles. We get our beer recipes and their component ingredients by downloading

BeerXML files from BrewersFriend.com. BrewersFriend allows home brewers and small

craft breweries to record and manage their recipes. Recipe ingredients are broken down

into hops and malts, each of which detail the types and amounts of ingredients added

to the recipe. Figure A (Appendix) provides an abridged example of the BeerXML file

for one such recipe.

BrewersFriend allows recipes to be made publicly accessible or otherwise marked
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private. The 126,256 public recipes on BrewersFriend form the basis of our sample. We

download these public recipes in BeerXML format, then parse the ingredients in each

of the five categories into separate tables. Once parsed, we spend considerable effort

disambiguating ingredient names so that they may be matched to multiple recipes.2

We then turn to refining our sample.

We first restrict our sample to include only recipes using whole ingredients. Some

recipes in BrewersFriend use pre-mixes from brewing kits that already combine ingre-

dients and therefore offer little information about the choice or combination of ingre-

dients. This restriction leaves us with 109,015 unique recipes, or 86% of our original

sample. We then turn to regionalizing our recipes through their styles.

Each recipe is associated with a single official BJCP style. BJCP styles are an inter-

national standard used to group and evaluate beers at brewing competitions worldwide.

Most BJCP styles are associated with a given country and region, for example Kölsch

is a specific BJCP style originating from Köln in Germany. We group our recipes into

144 different BJCP styles, and drop 3,159 recipes that do not specify a style. We drop

these BJCP “Specialty Beers” styles including mead, cider, and other non-beers and

lose an additional 4,821 recipes (4% of our remaining total). We are left with 101,034

recipes covering 111 styles. Table B (Appendix) lists these styles and the number of

recipes in each.

The distribution of recipes across styles is highly skewed. Two styles, American IPA

and American Pale Ale, represent more than 25% of all recipes. This may represent an

underlying bias in our data as BrewersFriend is based in the United States, or it could

also reflect the tremendous popularity of these styles.3 However, there are thousands

of international users of BrewersFriends and over 100 styles with at least one thousand

recipes each. Figure 1 shows the distribution of recipes by individual style.

There are a handful of styles, such as New Zealand IPA, that only have one recipe

2For example, one recipe may use “CaraPils” malt and another “carapils” malt, even though these are
the same underlying ingredient.

3As a robustness check, we randomly draw a sub-sample of American IPA recipes in proportion to the
number of recipes in the styles we compare with American IPA. Our results are largely unchanged, so we
present the full network in our comparisons below.
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Figure 1: Count of Recipes per Style

associated with them. To ensure adequate variation within styles, we further restrict

our sample to styles that have at least 100 recipes. We lose only 596 recipes (less than

1% of our sample) with this additional restriction, but do miss out on a few valuable

regional styles like Rauchbier, which is particular to the town of Bamberg in Germany.

After cleaning and regionalizing our style sample, we have 100,438 recipes covering 90

styles and spanning 13 countries. We map these styles into 25 regions with varying

levels of precision4. We then turn to our ingredient types of interest: hops and malts5.

We identify 4,882 different malt names across our sample, however not all of these

malts are truly unique due to minor variations in their names. We disambiguate these

malts by first removing all nationality and company information from the name6. We

then remove special characters and lowercase all names. We fuzzy match our cleaned

4Some beers like the California Common can be located to a specific city and even a particular brewery:
Anchor Brewing in San Francisco. Others have less precise origins. The American IPA is primarily attributed
to the West Coast of the United States, but is also fairly ubiquitous across the country. Finally, most British
beers can only be mapped to the national level, i.e. Scotland or England.

5BrewersFriend.com provides five categories of ingredients: Hops, Malts, Yeasts, Waters, and Miscella-
neous. We focus on hops and malts because they: 1) are arguably the most important ingredients in recipes;
2) are almost always combined with different varieties in recipes, as opposed to yeasts; 3) are the most readily
identifiable and easy to accurately localize.

6For example, “US - Castle Malting - Pilsner Malt” simply becomes “pilsner”.
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list of malts back to the recipes and confirm the matches by hand. Like styles, we

remove infrequently used malts appearing in fifteen or fewer recipes. We are then

left with 170 unique malts used in 99,943 recipes. Table C (Appendix) lists all these

disambiguated malts.

Like Malts, we begin with a list of 5,023 Hops that appear at least once across our

recipes. We repeat the name normalization process above, removing brand names and

indications of origin. We once more confirm these results by hand, paying particular

attention to code names and translations. For example, one common hop, Saaz, is

known in the Czech Republic as Žatec, the name of the town where it is produced.

After normalizing we perform a fuzzy match to a list of well known hops provided

by both Barth-Haas and Hoplist.com. Barth-Hass is one of largest producers of hops

worldwide and has developed a ubiquitous Tasting Guide detailing the flavor profile,

alpha acid, and location of global hops (BarthHaas, 2018). Hopslist.com similarly

maintains a global reference of hops and their locations (Healey, 2016).

We disambiguate our 5,023 hops from our recipes to just 229 global hops from the

Barth-Haas and Hopslist.com lists. Unmatched hops are almost all due to misclassi-

fications such as listing fruit or spices as hops, or other user data-entry errors when

creating the recipe. We similarly restrict our sample to hops appearing in 15 or more

recipes to ensure adequate variation across our sample. We lose only 362 recipes with

this restriction, leaving us with 229 unique hops used in 92,813 different recipes. Table

D (Appendix) lists these disambiguated hops.

After parsing, disambiguating, and cleaning our sample we are left with 92,813

recipes made from 170 malts and 161 hops across 90 different styles. Table 1 summa-

rizes these data. We now use these data to create recipe-ingredient networks for each

style.
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3 Beer Style Networks

We create an ingredient co-occurrence network for all 90 beer styles in our sample.

Each recipe represents a unique combination of hops and malts, at the extensive mar-

gin if a particular ingredient appears in a recipe, and at the intensive margin based

on the relative proportions used of each input. These style networks are graphical

representations of the distinct combinations of ingredients and their volumes.

Each ingredient is a node in the style network. We draw an edge between two ingre-

dients whenever they co-occur in the same recipe. Each edge is weighted in proportion

to the amounts used in the recipe. For example, if a recipe uses 1kg of Pale 2-Row malt

for every 100g of Chocolate malt, we value the edge between these two ingredients as

1/10.7 Because every beer belongs exclusively to one style, we can combine the nodes

and add their weighted edges to form unique style networks. If the same ingredient

pair appears in more than one recipe of the same style, we sum up their weights.

Our style networks describe the relationship between the ingredients used in every

beer recipe of a given style. The networks allow us to visualize the unique combinations

of ingredients that make up a beer style. We can also represent these style-ingredients

relationships algebraically:

Sij =


s11 s12 . . .

...
. . .

sn1 snn

 (1)

where Sij is the style’s adjacency matrix and every entry sij measures how often in-

gredients i and j appear together in recipes of the style, weighted by their relative

proportions. The adjacency matrix above can also be visualized as a style network.8

Figure 2 plots two such style networks. Panel A shows the style network for Amer-

7One does not usually observe the volume of each input used in the end product when using patents or
other data sources to build co-occurrence networks. Instead, this literature typically weights edges based
on the shares of the node. For example, if four technological codes appear in the same patent each gets a
weight of 1/4. For this reason, we also reproduce our analysis weighting the edges of the style networks by
the ingredients’ shares. Our results are robust to using this more common weighting method.

8The adjacency matrix, edge list, and networks are different ways to represent the same relationship
between nodes and edges. We provide definitions for all three in the Appendix. See primary references
Wasserman et al. (1994) and Barabási et al. (2016) for further information.
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ican IPA, the most popular style in our sample. Panel B shows the style network for

Kölsch, a beer style named for the Germany city where it was first created, which

perhaps best captures the regional nature of styles.9 We create both graphs using the

Kamada-Kawai force-directed drawing algorithm, which minimizes total path length

and places ingredients that are commonly used together next to one another (Kamada

et al., 1989). Likewise, Kamada-Kawai puts the most connected nodes at the center

of the network. The size of each node is proportional to that node’s degree centrality,

or how many connected links a node has. The width of each edge is proportional to

the weights of the ingredients’ as they co-occur in recipes. Hops are colored in green

and shaded by their alpha acid intensity, a proxy for bitterness. The darker the green,

the more bitter the hops. Malts are colored brown and shaded by their European Beer

Convention (EBC) coloration.10

These two styles and their graphs are quite different. American IPA uses many more

unique ingredients than Kölsch (321 nodes against 175). American IPA’s ingredients

are also more connected to one another with more than 17,000 total edges between its

nodes, each of which has 108 edges on average. Kölsch, on the other hand, has only

2,000 total edges and an average of 20 edges per node. The American IPA has a very

high network density, which is the number of actual edges between nodes out of all

theoretically possible edges. In fact, the American IPA has a relatively high network

density of 0.34 or 34% of all possible edges, while the Kölsch has a network density of

only 0.13.

The American IPA network seems to be more robust and complex than that of

Kölsch. The American IPA network includes more ingredients with stronger connec-

tions between them. Still, one might argue that because our sample of American IPA

recipes is much larger than any other style, and more than ten times greater than

Kölsch, we misrepresent its network connectivity.11 Nevertheless, these differences ex-

9Since 1997, Kölsch holds a Protected Geographical Indication (PGI) within the European Union.
10EBC coloration is a grading scale based on the color a particular malt imparts on a beer. Pilsners and

other light beers have an EBC of 4, whereas darker malt beers such as stouts have an EBC of 70.
11We test if the differences between the American IPA and Kölsch are the result of sample size. To do

so, we take 1,000 random sub-samples of American IPA consisting of 1,000 recipes each, approximately the
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Figure 2: Example Networks

(A) American IPA

Nodes Density Diameter Clustering Avg. Degree

321 0.34 1.20 0.54 108

(B) Kölsch

Nodes Density Diameter Clustering Avg. Degree

175 0.13 1.50 0.39 23

same number of Kölsch recipes. Although on average the American IPA random sub-sample networks are
not as connected as the full sample American IPA network, they remain more connected than the Kölsch
network. The random sub-samples have more nodes (22) and edges between them (4,600), more than the
Kölsch network. The sub-sample networks also have a higher density (0.17), average clustering coefficient
(0.40), and degree (40), as well as a shorter diameter (1.4).
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ist across all styles in our sample, and are evident even when considering networks with

a similar number of recipes.

For example, California Common, another typical beer from the American West

Coast, has a similar number of recipes as Kölsch at about 900 each. Despite the sim-

ilar number of recipes, California Common lists more ingredients (220 nodes) and a

higher average number of edges per node (38). California Common’s average clustering

coefficient is 0.46 compared to Kölsch’s 0.39, meaning California Common includes rel-

atively more “three-way” connections between ingredients. The California Common’s

network is also smaller than Kölsch’s in the sense that it takes fewer steps to traverse

the network. Indeed, California Common’s maximum shortest path, or diameter, is 1.0

compared to Kölsch’s 1.5.

These style networks provide us with a tractable method to visualize and model

the relationship between recipes and ingredients. We now use these models and their

properties to identify key ingredients, resilience, and relatedness across beer styles.

4 Eigenvector Centrality

While there is clearly significant variation among styles and their networks within our

sample, our main goal is to identify which key ingredients set these networks apart

and give beer styles their unique tastes. In other words, we are looking for the most

important ingredient nodes in a given style network. We turn to eigenvector centrality

as a measure of each node’s relative importance within a network. We follow the

seminal work of Bonacich (1972) and calculate eigenvector centrality as the weighted

sum of the centrality of all adjacent nodes. Mathematically we can express eigenvector

centrality as:

λc(vi) =
n∑

j=1

sijc(vj) (2)

where λ is the eigenvalue scale factor, c(vi) represents the centrality score of node vector

vi and sij is the weighted edge between nodes i and j. Algebraically this represents
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every element in the adjacency matrix (Sij) associated with our style networks.

Eigenvector centrality differs from traditional degree measures of importance be-

cause it also accounts for the relevance of a node’s immediate neighbors. As Ruhnau

(2000) explains: “centrality of nodes does not only depend on the number of its ad-

jacent nodes but also their value of centrality” (p.360). Eigenvector centrality awards

points for being linked to very central nodes even if the node itself has just a few con-

nections. For this reason, it is often used in social sciences to measure the influence of

agents (Abbasi et al., 2011; Li et al., 2016; Parand et al., 2016).

Table 2 shows the top ten ingredient nodes by eigenvector centrality in our original

American IPA and Kölsch networks. We normalize the centrality scores between zero

and one, such that the most central node in each network will always have a score of

one.12

Table 2: Top Ten Nodes by Eigenvector Centrality

American IPA
Ingredient Type Eigenvector
Citra Hop 1.00
Pale 2-Row Malt 0.91
Cascade Hop 0.77
Amarillo Hop 0.75
Simcoe Hop 0.74
Centennial Hop 0.74
Mosaic Hop 0.63
Columbus Hop 0.49
Chinook Hop 0.47
Maris Otter Malt 0.36

Kölsch
Ingredient Type Eigenvector
Pilsner Malt 1.00
Hallertau Hop 0.73
Tettnanger Hop 0.54
Saaz Hop 0.44
Vienna Malt 0.39
Hersbrucker Hop 0.36
Wheat Malt 0.29
Perle Hop 0.27
Pale 2-Row Malt 0.22
Magnum Hop 0.20

Once again, there are considerable differences between these two styles, this time in

key ingredients. The most central nodes for American IPA are mostly bittering hops

with high-intensity alpha acids from the Yakima Valley in Washington State: Citra,

Cascade, Amarillo, Centennial, etc. On the other hand, Kölsch relies heavily on aro-

matic hops traditionally found in Pilsners and Lagers from the Bavaria and Bohemia

regions such as: Hallertau, Tettnanger, and Saaz. There are likewise significant dif-

12We consider hops and malts together as both are fundamental ingredients to recipes, which use each in
different combinations.
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ferences in eigenvector centrality between the top ten ingredients of both styles. The

distance between the first ranking ingredient in Kölsch and the rest is much greater

than that in American IPA, implying the German style relies more heavily on a single

malt source: Pilsner. Figure 3 further illustrates this difference and plots the histogram

of eigenvector centrality for all ingredients in both beer styles.

Figure 3: Eigenvector Centrality Distribution within Styles

(A) American IPA (B) Kölsch

Note: These plots are the eigenvector centrality distributions for every ingredient in the Ameri-
can IPA and Kölsch networks. The x-axis lists ingredients ranked by centrality score. The y-axis
is the eigenvector centrality score. We measure centrality according to the eigenvector formula
developed by Bonacich (1972). We normalize centrality scores between one and zero, such that
the most central node always has a centrality score of one.

Both histograms in Figure 3 show signs of long tails common in power-law and

Pareto distributions, which confirm that our beer networks display scale-free properties

prevalent in many social, biological, and physical systems (Newman, 2005). In scale-

free networks, there are often a small number of highly connected nodes with most

other nodes having little to no edges. This unequal distribution persists even when the

system expands or contracts, hence the name scale-free.

Because the number of edges per node is so skewed, a common trait across scale-

free networks are their resiliency to “errors” or the loss of nodes. Because most nodes

have few connections, deleting a random node from a scale-free network does little to
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change the network’s overall structure and function. Conversely, scale-free networks

are extremely vulnerable to “the selection and removal of a few nodes that play a vital

role in maintaining the network’s connectivity” (Albert et al., 2000, p.379).

The concepts of error tolerance and attack vulnerability are fundamental for design-

ing and understanding communication networks such as the World Wide Web. Beer

is definitely not the Internet, so instead it helps to imagine a scenario where due to

climate change or diseases we are no longer able to produce one or two varieties of

hops. Depending on the centrality of these lost hops in the style network, we ought to

expect different effects on the network structure and number of feasible recipes. If the

lost hops are very central to the style network, we would expect its structure to change

significantly. If instead the hop is peripheral, the network structure and its observ-

able characteristics would not change much at all. To put this idea idea into practice,

imagine the world is no longer able to produce Citra hops. Kölsch beers would not

fundamentally change, whereas the network structure and frontier of possible recipes

within the American IPA network would be significantly reduced. We explore this

network resiliency and sensitivity to particular ingredients in Section 5 below.

5 Stress Test

Rather than just observing a given node’s centrality in a network, we can ask: what if

that node had never existed in the first place? This approach is referred to as network

fragility or resiliency analysis and allows us to measure aggregate network statistics

like density, path length, and centrality as a function of one particular node. We follow

Albert et al. (2000) and Toth et al. (2020) and iteratively remove nodes from our style

networks and recalculate key network statistics to measure how a network changes

in the absence of a given node. In our case, this approach reveals how sensitive a

given beer style is to losing any one ingredient, which in turn reveals that ingredient’s

importance to the style.

We run this stress test in two ways. First, we delete nodes in rank order accord-
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ing to their eigenvector centrality. Second, we delete nodes at random as a baseline

comparison. To truly randomize this deletion process, we run 10,000 iterations of

random deletions for each network and report the average changes in network statis-

tics. We provide a glossary of these network statistics and their definitions in Table A

(Appendix).

Figure 4 shows the consequences of both targeted and random deletion in the Amer-

ican IPA network. Panel 4A shows the resulting network after targeted deletion of 40%,

60%, and 80% of the most central nodes according to eigenvector centrality. Panel 4B

shows the same 40%, 60%, and 80% deletion, this time removing nodes randomly. Like

Figure 2, we use the Kamada et al. (1989) network plotting algorithm which places the

most central nodes in the middle. To better visualize the effects of deleting nodes, we

fix the network at its original layout, then remove nodes and edges from it. However,

we properly re-scale the network after each deletion when re-calculating network statis-

tics. As before, the node sizes are proportional to the weighted number of connections,

and their colors depend on the ingredient type and intensity.

Panel 4A clearly shows the sensitivity of the American IPA network to targeted

deletion. In contrast, Panel 4B shows American IPA’s relative resilience to random

deletion. Even if we delete 40%, 60% or 80% of the nodes, the resulting networks

from the random attacks have more connections and shorter paths relative to the

targeted attack networks. To measure how much variation we obtain from the deletions,

we compute four key network statistics and compare them to the full network. We

reproduce the randomization order 10,000 times and save the density, diameter, average

clustering coefficient, and average degree from the resulting networks. Figure 5 shows

the distribution of the absolute percentage change our four network statistics after

randomly deleting 50 nodes. We also highlight the changes in those statistics from a

targeted deletion of 50 nodes with a dashed red line. Figures B and C (Appendix)

repeat this targeted and random deletion exercise for Kölsch to much the same effect.

The effects of the targeted attack are clearly much greater than its random counterpart.

Even though the American IPA is the largest style in our sample and perhaps the
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Figure 4: Stress Test - American IPA

(A) Targeted Attacks

(B) Random Attacks

Note: Both panels depict the impact of removing 40%, 60% or 80% of the nodes from the
American IPA network. Panel 4A shows the effect of targeted deletion according to eigenvector
centrality. Panel 4B shows a random attack where we nodes are deleted in random order.

most connected network out all styles, it relies on just handful of keystone ingredients

without which the entire style network crumbles. These keystone ingredients are what

differentiate styles and create a unique, identifiable flavor.
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Figure 5: Resiliency Against Random Removal

(A) Net Density (B) Net Diameter

(C) Avg. Clustering Coefficient (D) Avg. Degree

Note: These figures plot the probability density distribution of the effect of deleting 50 nodes
from the American IPA network. The y-axis is the probability density scaled between 0 and 1,
such that the most frequent effect is equal to 1. The x-axis is the absolute value of the percentage
change of a given network statistic. Density refers to the number of edges out of total possible
links. Net Diameter is the maximum shortest path. Clustering coefficient is the fraction of total
three-way connections out all possible ones. Average degree is the average number of edges each
node has. A network is no longer connected when Average Degree falls below one. The dashed
black line is the average effect of 10,000 random deletions. The dashed red is the effect of targeted
deletion according to eigenvector centrality.

6 Resiliency

A common feature across all beer styles is their high dependence on a few key, central

ingredients. All style networks show scale-free properties and thus are vulnerable to
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the failure of just a few ingredient nodes. However, there is significant variation in

ingredient dependence across styles. Beer styles are not equally resilient and deleting

the most central nodes in one style might have a more powerful effect than in another.

Let us return to our original example and compare the network structures and

eigenvector centrality distributions of American IPA and Kölsch. American IPA is

more resilient because it has a larger number of connections and many ingredients

with a relatively high eigenvector centrality. As such, it can afford to lose more critical

nodes than Kölsch. Is this a unique attribute of American IPA alone, or common to

the larger family of IPA styles?13 To find out, we compare American IPA within and

across style families. Table 3 introduces two new styles, English IPA and Munich Helles,

and shows the network consequences of targeted deletion of the top fifty ingredients

for all four styles. Figure 9B (Appendix) plots the ingredient networks for these two

additional styles.

All four example networks experience a loss in connectivity after deleting the top

five, ten, twenty, or fifty most central nodes. After deleting the top 20 nodes, every

network is nearly half its original size by density or average degree. Likewise, network

diameter nearly doubles after removing the top 20 nodes, meaning all four networks are

becoming less connected and more difficult to traverse. Despite these similar trends,

Table 3 also shows variation within each style’s ability to withstand shocks. American

IPA experiences the largest overall drop in average degree after deleting fifty nodes, yet

remains more connected than the full Kölsch or Munich Helles networks. Moreover,

this is not just a function of the IPA style family, as closely-related English IPA does

not exhibit the same resiliency. What makes the American IPA so much more robust

than other networks? It is clearly not only a function of sample size, but rather is the

result of the style’s relative fungibility of key ingredients. American IPA has greater

availability of close substitutes because it makes use of more diverse ingredients.

Turning back to our hypothetical where Citra hops go extinct, American IPA still

13The BJCP also defines several ‘Style Families’ that group multiple related styles. These families are
listed in Table B (Appendix).
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Table 3: Network Resiliency

Style Nodes Deleted Density Diameter Avg. Clust. Coeff. Avg. Degree

American IPA

0 0.34 1.20 0.54 108.50
1 0.33 1.20 0.54 106.04
5 0.31 1.50 0.53 96.60
10 0.27 1.50 0.52 85.74
20 0.22 1.55 0.50 66.80
50 0.12 2.16 0.37 32.84

English IPA

0 0.19 1.16 0.45 49.17
1 0.18 1.16 0.44 47.59
5 0.16 1.70 0.43 41.77
10 0.14 1.47 0.40 35.38
20 0.10 1.91 0.35 25.10
50 0.05 2.45 0.23 10.64

Kölsch

0 0.13 1.50 0.39 22.96
1 0.12 1.81 0.40 20.89
5 0.09 2.00 0.38 16.00
10 0.07 2.33 0.34 11.71
20 0.05 2.42 0.27 7.62
50 0.01 3.30 0.30 1.85

Munich Helles

0 0.16 1.85 0.42 15.39
1 0.14 2.15 0.43 13.63
5 0.10 2.14 0.37 9.67
10 0.07 2.15 0.35 6.68
20 0.04 1.97 0.32 3.23
50 0.01 0.83 1.00 0.62

has many alternatives with similar traits to choose from. This why the geography of a

style is so important. The United States produces more than 60 different types of hops,

many of which are very similar to Citra because they are grown in the same regions. In

fact, brewers refer to Citra and its sister hops as the ‘7Cs’, which also include: Cascade,

Centennial, Chinook, Cluster, Columbus and Crystal. All of the 7Cs are known for

their intensity and bright citric flavour. So while the Citra hop is a key ingredient of

American IPAs, it is also easily replaceable. It is then important to understand the

correlation between a style’s resiliency, the availability of related ingredients and the

overall diversity of inputs used. We introduce three new variables to measure these

factors.
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We measure the resiliency of each style network according to Toth et al. (2020),

who study the co-occurrence of patent classes and define technological resiliency as the

“amount of node removal that a region’s technology network could withstand without

being fragmented into many unconnected components” (p.13). We use the Molloy and

Reed (1995) criterion as the threshold below which a network fragments into many

separate pieces. Mathematically the criterion is:

Ωs =

∑N
i=1 k

2
is∑N

i=1 kis
(3)

where Ωs is the resiliency score, or the percentage of nodes removed before the Molloy-

Reed criterion falls below two, and kis is the average degree, or number of edges each

node in the network has. Having defined a measure of network resiliency, we now

introduce two of its key determinants: related and unrelated variety.

EEG discusses the differences between related and unrelated variety and how these

properties shape the ability of firms and regions to diversify, innovate, and grow (Con-

tent and Frenken, 2016; Boschma, 2017; Miguelez and Moreno, 2018; Rocchetta and

Mina, 2019). We borrow these concepts to understand how the availability of substi-

tutes for key ingredients shapes the resiliency of our style networks. We take related

variety to represent the presence of similar substitutes e.g. Citra or Chinook, while

unrelated variety is a style’s ability to source from multiple and distinct products, e.g.

Pale 2-Row and roasted barley.

We measure unrelated variety according to Frenken et al. (2007) and we apply the

Shannon Entropy formula (Shannon, 1948) to the incidence of ingredients in a style as

follows:

UVs =

N∑
i=1

Pis log2

(
1

Pis

)
(4)

where Pis is the probability of finding ingredient i in beer style s. The Shannon Entropy

formula applied to our beer styles captures the level of “uncertainty” or “surprise”

across each style’s recipes. In our style networks, Shannon Entropy measures the

likelihood a recipe includes an unexpected ingredient not commonly found in other
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beers that belong to the same style, as well as how styles source distinct ingredients. For

an example of a surprising ingredient, think of using a Chocolate type malt, typically

found in dark and robust Stouts, to make an American IPA. Thankfully this unsavory

combination is not very common, though it is certainly possible and would contribute

towards a larger entropy or unrelated variety for the style.14

Frenken et al. (2007) exploit the unique hierarchical structure of employment to

distinguish between related and unrelated variety. However, we cannot apply the same

approach to our beer recipes as we cannot separate ingredients into hierarchical struc-

tures. Instead, we follow Kogler et al. (2013, 2017) and calculate average relatedness

of individual ingredients as a measure of related variety.

We first create a global co-occurrence network covering all beer recipes in our sam-

ple regardless of style. The global network follows the same structure as the individual

styles described in Section 3. We use this network to measure the similarity or relat-

edness between each ingredient pair. The more often two ingredients appear together

across recipes, the more similar they are and the closer their “cognitive” proximity

(Nooteboom, 2000). We measure relatedness by standardizing the elements of the ad-

jacency matrix by the square root of the product of the number of recipes in the row

and column ingredients of each element:

Rij =
sij√
Ni ∗Nj

(5)

where Rij measures the relatedness of each ingredient pair, sij are the elements of the

adjacency matrix and measure how often these two ingredients co-occur (weighted by

their proportions), and Ni, Nj are the count of total recipes containing each ingre-

dient. Considering the incidence of ingredients within each style to the sum of their

proportions we estimate the style’s average relatedness as:

ARs =

∑
i

∑
j Rij(NiNj) +

∑
i 2Ni

Ps(Ps − 1)
(6)

14Stone Brewing has one such Valentine’s-themed example, though Stone gets no love from the Authors
for it: https://www.stonebrewing.com/beer/stone-enjoy-ipa-series/stone-enjoy-021417-chocolate-coffee-ipa
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where Ps is total count of recipes within each style. Therefore, while unrelated variety

measures how much each style sources from various ingredients, average relatedness

measures the similarity of ingredients used within a style, where we first estimate

relatedness using the global sample of recipes. In other words, average relatedness

measures the availability of substitutes for every core ingredient used in a given style.

For example, two similar hops like Citra and Mosaic have a relatively high average

relatedness of 3.69, whereas two distant hops such as Citra and Hallertau have an

average relatedness of just 0.21. The same is true of malts as well. The delicious Pale

2-Row and Chocolate example above also has a mercifully low average relatedness of

only 0.21. We conclude that if a style uses more similar ingredients, it will have a

higher average relatedness and more readily available substitutes.

These EEG metrics allow us to measure the diversity of ingredients within a style,

as well as the importance of having substitutes. It is important to note, however,

that these variables are not mutually exclusive. A style could have both high levels

of average relatedness and unrelated variety. That is, a style could simultaneously use

many ingredients, each with ample substitutes.

After introducing these measures of resiliency, unrelated variety, and average re-

latedness, we can observe the interplay between them within recipes of a given style.

Figure 6 plots this relationship. Styles with higher levels of both related and unrelated

variety tend to be more resilient. Taking geography into account, American Styles

are more robust than the English, Belgian, or German ones, precisely because of their

diverse range of ingredients and easily available substitutes.

7 Geography Matters?

So far we have shown that beer styles are highly dependent on a few central keystone

ingredients. It remains to be shown that these keystone ingredients differ across styles,

otherwise all beers would rely on the same few ingredients. We now turn to demon-

strating how central ingredients vary across styles, and that each beer depends on a
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Figure 6: Resiliency vs. Unrelated Variety and Related Variety

(A) Unrelated variety (B) Related Variety

Note: These plots show the correlation between resiliency and either unrelated variety or related
variety. The y-axis is resiliency, which we measure as the percentage of nodes a network can lose
before fragmenting into many unconnected components. The x-axis is either unrelated variety or
average relatedness. We calculate unrelated variety using the Shannon Entropy formula following
(Frenken et al., 2007). We calculate related variety following (Kogler et al., 2013). Points are
colored according to the country of origin of the beer style.

unique combination of core ingredients. It is these unique combinations that contribute

most to a style’s network and to its distinctive flavor.

Table 2 highlights that our two sample styles, American IPA and Kölsch, rely on

different ingredients with different eingevector centrality scores. Turning to other style

networks, we note how distinct nodes are both highly central to the network and also

specific to that style. For example, dark roasted barley is the most central component

of Irish Stout, and its most famous variant, Guinness. Dark Munich malt is the most

central ingredient for the local Dunkel dark lager. Vienna malt is unsurprisingly the

most central ingredient in Vienna Lager.

Part of what makes these styles so easily identifiable is that their central ingredients

are either not used or are of much lower importance in other styles of beer. It is

helpful to visualize the distribution of eigenvector centrality for a given key ingredient

node across style networks. Figure 7 shows the probability distribution of eigenvector
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centrality for the two most central nodes in the American IPA and Kölsch: Citra hops

and Pilsner malt, respectively. While these distributions are different, they both reveal

a bi-modal pattern indicating that while an ingredient may be used in many recipes, it

is highly relevant in just a few. Indeed, we find that Citra hops are central components

of most American ales but are missing from many European lagers. By contrast, Pilsner

is the preferred base malt for many continental lagers from the Bavaria and Bohemia

regions but is not as common in English and American ales, which tend to use pale ale

malts such as Maris Otter Pale or Pale 2-Row as their base malt.

Figure 7: Eigenvector Centrality Distribution across Styles

(A) Citra (B) Pilsner

Note: These plots show the probability density function of the eigenvector centrality for two
ingredients prevalent in many beer styles: Citra hops and Pilsner malt. The x-axis is the eigenvec-
tor centrality of the nodes computed for every style in our sample. The y-axis is the probability
density of the centrality score. Both axes are scaled between one and zero such that when an
ingredient is the most influential in a network, it will have a centrality score of one. A probability
density of one means this is the most frequent centrality score of the ingredient among the beer
styles. We measure eigenvector centrality according to Bonacich (1972).

To further understand how geography shapes differences in ingredient centrality it

is helpful to think about two examples. Figure 8A shows the eigenvector scores of the

top ingredients in two members of the same style family, American and English IPA.

Considering just the hops shown in Panel 8A, it is clear that English IPA makes heavy
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use of American hops. Despite this colonial influence, English IPA also relies heavily

on two distinctively English hops, East Kent Golding and Fuggles. These hops are

conspicuously absent from American IPA, and their inclusion contributes to English

IPA’s unique characteristics and flavour. The American hops are bittering hops with

high levels of alpha acids and citric flavor, while their English counterparts are mixed

purpose hops with fewer alpha acids and are known for their earthy tones (Healey, 2016;

BarthHaas, 2018). English IPA also uses Maris Otter malt, a classic malt produced

in England, much more than the American IPA. Looking at the centrality scores of

ingredients across the two IPAs, it is easy to see that English IPA has more herbal tones,

which captures why the English version “has less hop intensity and more pronounced

malt flavours than typical American versions” (BJCP, 2015).

Having considered regional differences in similar styles above, we turn to style

differences within the same region. Figure 8B shows the same relationship for two

German beers: Munich Helles, a light lager, and Kölsch, a pale ale. Despite belonging

to two distinct style families, there is significant overlap in the centrality of their

ingredients. Kölsch is the only pale ale brewed in Germany, which makes it distinct

from all other beers in the country and unique to Köln. Yet, compared to ales from

other nations, Kölsch uses significantly more of the base malts usually found in German

pilsners and lagers. Further, Kölsch favors using the German and Czech hops abundant

in lagers and known for their aroma, low bitterness, and lightly flowery and spice

taste (Healey, 2016; BarthHaas, 2018). These central German nodes contribute to the

uniqueness of Kölsch, a pale ale with pronounced lager traits, which could easily lead

the “untrained taster to mistake it for a somewhat subtle Pils” (BJCP, 2015).

Another way to consider how beer styles differ with geography is to compare similar

style networks. Along these lines, we measure the product-moment correlation coeffi-

cients between every style adjacency matrix. The correlation coefficient captures how

similar the weighted edges between ingredients are across any two styles. Correlation

gives us the overlap between style networks where ingredients appear frequently to-

gether and combine in similar ways. From our example in Figure 8, we ought to expect
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Figure 8: Eigenvector Centrality of Ingredients by Styles

(A) American IPA vs. English IPA

(B) Kölsch vs. Munich Helles

Note: These figures plot the eigenvector centrality of the five most central malts and hops
in four style networks: American IPA, English IPA, Kölsch, and Munich Helles. Eigenvector
centrality measures the importance of each ingredient to a style, which we compute according to
Bonacich (1972). Panel 8A shows the comparison between two styles of the same family (IPA)
across different countries: the United States and England. Panel 8B compares the centrality
scores for two styles of different families, pale ale and pale lager, within the same country of
origin: Germany. We arrange the ingredients in Panel 8A according to their centrality scores for
American IPA. In Panel 8B, we arrange the ingredients according to their centrality score for
Kölsch.

a higher correlation coefficient between the two German styles than their American

counterpart.
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Mathematically, we can express the styles correlation coefficient as:

cor(S, S′) =
cov(S, S′)√

cov(S, S)cov(S′, S′)
(7)

where S and S′ are two example adjacency matrices and their covariance is given by:

cov(S, S′) =
1

|V2|
∑
i,j

(Sij − µS)(S′ij − µ′S) (8)

where Sij and S′ij are the elements within each adjacency matrix, or the weighted edges

between the ingredients i and j in both matrices, µS and µ′S are the average degree,

and |V2| is the variance. If two adjacency matrices have comparable weighted edges

between their ingredients then those styles are similar and will have larger correlation

coefficients.

Figure 9 lists the top ten correlations for two networks: American IPA and Kölsch.

Perhaps unsurprisingly, we find American IPA to be very similar to other American

beers, including the American Light Lager, particularly due to the pronounced use of

American hops. Kölsch, on the other hand, is most similar to German and Bohemian

lagers, and to a lesser degree to other pale ales from Europe, especially those in Belgium.

Figure 9 highlights that beer recipes and styles are clustered in space. Beer styles

are more similar to other styles from the same region, even if those styles belong to

very different families. This is true for our American IPA and Kölsch networks, and

for other styles in different regions. For example, Bohemian Pilsner is more closely

related to its regional neighbor, Czech Pale Lager (correlation coefficient of 0.95), than

it is to a beer of its same style, German Pils (correlation coefficient of 0.76). Likewise,

Saison, a beer style from French-speaking Wallonia in Belgium, is more similar to other

Belgian ales like the Belgian Golden Ale (0.78). Golden Ale in turn is more similar to

other styles from Dutch-Speaking Flanders like Belgian Golden Strong Ale (0.91) and

Belgian Trippel (0.91). Figure E (Appendix) plots the correlation coefficients for all

styles.

Therefore, regional ingredients are not only critical to the uniqueness and resilience
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Figure 9: Top Ten Similar Styles

(A) American IPA (B) Kölsch

Note: These plots show the ten styles most similar to American IPA and Kölsch, ranked by
correlation coefficient. The x-axis is the correlation coefficient. The y-axis displays the names
of the most similar styles, with style family and country of origin in parenthesis. We calculate
the correlation coefficient as product-moment correlations between any two styles’ adjacency
matrices.

of a style, they also transcend style boundaries and link geographically proximate beers

together. This makes good sense, as the original brewers primarily had access to local

ingredients and made the most with what was available. This lack of variety, be it

natural or imposed, as under the German Reinheitsgebot, informed the development

of these Classical styles. Even in an era of globalization, these differences persist. New

World styles like American IPA benefit from the abundance of ingredients available

to them. This results in a large number of ingredients (average relatedness) with

a substantial number of ready substitutes (related variety). These factors give New

World styles incredible resilience to losing keystone ingredients, as well as the flexibility

to adapt and embrace new ones. This adaptability explains the extreme popularity of

these styles and why so many brewers are drawn to them.
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8 Conclusion

We bring new data and methods to the discussion on beer and place. We find that

only a few key ingredients differentiate beer styles, and that geography and the di-

versity of ingredients matter to the resilience of a style. We are the first to collect

and disambiguate a comprehensive set of beer recipe data, which we hope others will

build on. Not only can this beer data answer other longstanding questions in the ge-

ography of beer literature, but the highly detailed ingredient information can also be

seen as data on intermediate goods used to produce a final product. Because of this,

we are able to bring an existing methodology to a new area of inquiry. We hope our

use of techniques from seemingly unrelated fields inspires others to do the same. We

quantify the benefits of styles having an abundance of ingredients and substitutes in

their regions. This conclusion is a sensible one, and is by no means specific to beer

alone. Especially in today’s ever more connected world, embracing the abundance and

diversity that globalization offers is useful for everyone, brewers included. We invite

you to pour yourself a cold one and enjoy a sip of that diversity with us. Cheers.
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Appendices

Table A: Glossary

Term Definition Formula
Node Connection point in a network graph −
Edge Link between two nodes in a network graph −
Edge List Dataframe containing the starting point and

end of every edge, as well as its weight
−

Adjacency Matrix A square matrix were each element designate
the edges between a pair of nodes

S = [sij]

Network Graphical representation of nodes and edges −
Degree (Centrality) Sum of all the edges incident to a node

n∑
i 6=j

sij

Eigenvector Centrality A measure of a node’s influence. We calculate
it as the weighted sum of the centrality of all
adjacent nodes

c(vi) =
n∑

j=1

sijc(vj)

Density The share of existing edges out of all possible
links in the network

m
n(n−1)/2

Diameter The largest distance between any two pair of
nodes

−

Clustering Coefficient The proportion of exiting edges among each
node’s neighbors

−

Resiliency Percentage of nodes one can delete before the
network becomes fragmented into many un-
connected components

−

Molloy-Reed Criterion Threshold at which a complex network will
lose its large connected component

Ωs =
∑N

i=1 k
2
is∑N

i=1 kis
< 2

Unrelated Variety A measure of diversity among components of
a recipe-ingredient incidence matrix

I∑
i=1

Pis log2

(
1
Pis

)
Relatedness A measure of similarity between the networks

nodes in the global network

sij√
Ni∗Nj

Average Relatedness The average relatedness across all nodes in a
style’s network

∑
i

∑
j
Rij(NiNj)+

∑
i 2Ni

Pis(Pis−1)

Note: The table shows definitions and formulas for all the network related terms used throughout
the paper. For further information on these, we refer to Wasserman et al. (1994); Barabási et al.
(2016); Frenken et al. (2007); Kogler et al. (2013).
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Table B: Style List

Style Family Country Region No. Recipes

American IPA IPA United States West Coast 14694
American Pale Ale Pale Ale United States West Coast 12363
American Light Lager Pale Lager United States Midwest 4638
Saison Pale Ale Belgium Wallonia 4163
Blonde Ale Pale Ale United States West Coast 3605
New England IPA IPA United States New England 3020
American Amber Ale Amber Ale United States West Coast 2924
Irish Red Ale Amber Ale Ireland Ireland 2133
American Stout Stout United States West Coast 1996
Weissbier Wheat Beer Germany Bavaria 1818
Witbier Wheat Beer Belgium Flemish Brabant 1704
Strong Bitter Amber Ale United Kingdom England 1582
Sweet Stout Stout United Kingdom England 1571
American Porter Porter United States East Coast 1560
English IPA IPA United Kingdom England 1527
Oatmeal Stout Stout United Kingdom England 1513
Imperial IPA IPA United States West Coast 1498
American Brown Ale Brown Ale United States West Coast 1452
Double IPA IPA United States West Coast 1366
Russian Imperial Stout Stout Russia Baltic 1341
Black IPA IPA United States West Coast 1136
Best Bitter Amber Ale United Kingdom England 1128
Ordinary Bitter Amber Ale United Kingdom England 1111
British Brown Ale Brown Ale United Kingdom England 1069
California Common Amber Lager United States San Francisco 1015
Belgian Pale Ale Pale Ale Belgium Flemish Brabant 1008
American Wheat Beer Wheat Beer United States Pacific Northwest 969
Kölsch Pale Ale Germany Cologne 946
Belgian Blond Ale Pale Ale Belgium Flemish Brabant 918
Märzen Amber Lager Germany Bavaria 910
Red IPA IPA United States West Coast 893
Cream Ale United States United States Midwest 857
Berliner Weisse Wheat Beer Germany Berlin 824
Belgian Dubbel Amber Ale Belgium Flemish Brabant,

Antwerp
812

Robust Porter Porter American East Coast 720
Belgian Tripel Strong Ale Belgium Antwerp 712
British Golden Ale Pale Ale United Kingdom England 705
American Lager Pale Lager United States Midwest 682
Brown Porter Porter United Kingdom England 674
Dunkles Weissbier Wheat Beer Germany Bavaria 612
Irish Stout Stout Ireland Ireland 583
Rye IPA IPA United States West Coast 573
Belgian Golden Strong Ale Strong Ale Belgium Flemish Brabant,

Antwerp
565
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Belgian Dark Strong Ale Strong Ale Belgium Flemish Brabant,
Antwerp

563

German Pils Pilsner Germany Bavaria 558
White IPA IPA United States West Coast 553
Imperial Stout Stout United Kingdom England 546
Vienna Lager Amber Lager Austria Vienna 503
Dark Mild Brown Ale United Kingdom England 501
Foreign Extra Stout Stout United Kingdom England 475
English Porter Porter United Kingdom England 465
Bohemian Pilsener Pilsner Czech Republic Plzeň 451
American Barleywine Strong Ale United States West Coast 441
Scottish Export Amber Ale United Kingdom Scotland 439
English Barleywine Strong Ale United Kingdom England 426
Old Ale Strong Ale United Kingdom England 400
Belgian IPA IPA Belgium Flanders 386
British Strong Ale Strong Ale United Kingdom England 384
Belgian Specialty Ale Strong Ale Belgium Flemish Brabant,

Antwerp
376

Dry Stout Stout United Kingdom England 375
American Strong Ale Strong Ale United States West Coast 359
Weizenbock Bock Germany Bavaria 346
Doppelbock Bock Germany Bavaria 332
Baltic Porter Porter Scandinavia Baltic 331
Helles Bock Bock Germany Bavaria 319
Bière de Garde Pale Ale France Northern France 311
Altbier Amber Ale Germany Düsseldorf 304
Mild Amber Ale United Kingdom England 299
Munich Dunkel Dark Lager Germany Bavaria 290
Scottish Heavy Amber Ale United Kingdom Scotland 290
Trappist Single Pale Ale Belgium Flemish Brabant,

Antwerp
255

Strong Scotch Ale Strong Ale United Kingdom Scotland 248
Flanders Red Ale Sour Ale Belgium West Flanders 243
Schwarzbier Dark Lager Germany Thuringia, Saxony,

& Franconia
241

Munich Helles Pale Lager Germany Munich 238
Wee Heavy Strong Ale United Kingdom Scotland 222
Czech Premium Pale Lager Pale Lager Czech Republic Plzeň 213
Scottish Light Pale Ale United Kingdom Scotland 183
Lambic Wheat Beer Belgium Brussels 172
Australian Sparkling Ale Pale Ale Australia Australia 154
Brown IPA IPA United States Westcoast 153
Traditional Bock Bock Germany Einbeck 151
Roggenbier Wheat Beer Germany Regensburg 150
Festbier Pale Lager Germany Munich 147
Czech Pale Lager Pale Lager Czech Republic Plzeň 141
Fruit Lambic Wheat Beer Belgium Brussels 138
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Irish Extra Stout Stout Ireland Ireland 131
Gose Wheat Beer Germany Leipzig 119
Gueuze Wheat Beer Belgium Brussels 116
Oud Bruin Sour Ale Belgium East Flanders 110
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Table C: Malt List

Malt Name Recipes EBC Styles Countries

Pale 2-Row 37806 2.18 American Lager, Cream
Ale, etc.

AR, AU, BE, CA, DE,
DK, FI, FR, UK, US

Pilsner 25483 1.70 Altbier, Belgian Tripel,
Berliner Weisse, etc.

AR, AU, BE, BR, CA,
DE, FI, FR, NL, NZ,
UK, US

Maris Otter Pale 19820 3.66 Best Bitter, Mild, Ordi-
nary Bitter, etc

BE, CA, UK, US

Pale 14814 2.95 Belgian IPA AR, AU, BE, BR, CA,
CL, DE, FI, IE, NL, NZ,
SE, UK, US, ZA

Wheat 13826 2.09 Dunkles Weissbier, Fruit
Lambic, Weizenbock

AR, AU, BE, CA, DE,
FI, IE, NL, NZ, UK, US

Chocolate 13654 371.69 American Porter, Amer-
ican Stout, etc

AR, AU, BE, CA, CL,
DE, FI, IE, NL, NZ, UK,
US

Munich Light 11486 8.07 Märzen AU, BE, CA, DE, FI,
NL, UK, US

Vienna 11322 3.95 Festbier, Vienna Lager AR, AU, BE, BR, CA,
CL, DE, FI, FR, IE, NL,
NZ, UK, US

Caramel/Crystal60L 10970 59.95 American Brown Ale AR, BE, CA, DE, NL,
UK, US

Carapils Dextrine 9424 1.80 Strong Scotch Ale DE, FI, US
Roasted Barley 9092 411.03 Irish Extra Stout AR, AU, BE, CA, DE,

FI, NL, NZ, UK, US
Caramel/Crystal40L 7790 40.01 Robust Porter CA, DE, UK, US
CaraMunich 7682 47.03 Flanders Red Ale BE, DE, NL, UK, US
Munich 7213 14.42 Traditional Bock AR, AU, BE, BR, CA,

CL, DE, FI, IE, NL, NZ,
UK, US

CaraPils 6659 2.39 Munich Helles AR, BE, DE, IE, UK, US
White Wheat 6654 2.75 American Wheat Beer BE, CA, DE, US
Acidulated 5918 3.38 Gose BE, DE
Caramel/Crystal120L 5000 120.00 Imperial Stout BE, CA, DE, UK, US
Caramel/Crystal20L 4692 20.20 American IPA BE, CA, DE, FI, US
SpecialB 4312 116.08 Belgian Dubbel BE, UK
Biscuit 4072 23.21 Belgian Dubbel AR, AU, BE, CA, DE,

FI, NL, NZ, UK, US
Dark Munich 4042 15.71 Munich Dunkel AU, CA, DE, FI, NL,

UK, US
Rye 3992 3.56 Roggenbier, Rye IPA AU, BE, CA, DE, FI,

NZ, UK, US
Honey 3828 24.60 Scottish Light CA, FI, UK, US
Victory 3784 27.98 American Brown Ale UK, US
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Golden Promise 3750 2.96 Wee Heavy FI, IE, UK
Melanoidin 3530 24.87 Traditional Bock AR, BE, DE, US
Aromatic 3332 29.24 Flanders Red Ale BE, DE, FR, NL, UK,

US
Caramel/Crystal10L 3107 10.02 Blonde Ale BE, DE, FI, NL, US
Caramel/Crystal80L 3027 80.01 American Brown Ale CA, UK, US
Black 2690 506.76 Robust Porter BE, DE, FI, NL, UK, US
Pale Chocolate 2517 209.35 English Porter FI, NZ, UK, US
CaraRed 2311 20.00 Red IPA DE, UK, US
Black Patent 2101 523.74 Robust Porter UK, US
CarafaIII 2057 533.70 Black IPA DE, UK
CaraHell 2036 10.91 Helles Bock DE, US
Caramel/Crystal30L 2029 29.84 Scottish Export AR, FI, UK, US
Brown 2017 69.07 English Porter NL, NZ, UK, US
Pale Wheat 1965 1.71 Weizenbock BE, CA, DE, UK, US
Caramalt 1930 18.11 Irish Extra Stout AU, BE, CL, DE, UK,

US
Carafoam 1787 1.89 American Light Lager DE, US
Caramel/Crystal15L 1747 15.00 American Strong Ale AR, UK, US
CarafaII 1735 426.81 Schwarzbier DE
Caramel/Crystal45L 1621 44.15 Irish Extra Stout BE, NL, UK, US
CaraAroma 1609 126.07 Foreign Extra Stout DE, UK, US
Bohemian Pilsner 1544 1.92 Bohemian Pilsner DE
Dark Crystal 1499 88.99 English Porter AU, NZ, UK, US
Amber 1494 27.19 English Porter AU, BE, CA, DE, IE,

NL, UK, US
Caramel/Crystal90l 1395 90.01 Foreign Extra Stout CL, UK, US
Midnight Wheat 1347 549.76 Black IPA CA, US
Red Wheat 1281 2.48 Weizenbock CA, US
Ale 1258 2.96 British Golden Ale AU, BE, DE, FI, IE, NL,

NZ, UK, US
Oats 1257 2.25 New England IPA AU, BE, CA, FI, IE, NZ,

UK, US
Smoked 1207 4.11 Strong Scotch Ale BE, DE, FI, NL, NZ,

UK, US
Caramel/Crystal150L 1150 125.26 Oatmeal Stout BE, DE, FI, UK, US
CarafaI 1126 340.71 Irish Extra Stout DE
Extra Dark Crystal 1096 133.84 Scottish Light AU, UK
CaraVienne 1063 20.22 Oud Bruin BE, US
CaraAmber 1025 23.55 American Amber Ale DE
Pale 6-Row 1020 1.82 Cream Ale CA, US
Golden Naked Oats 987 9.79 American Brown Ale UK
Special Roast 963 50.14 American Brown Ale BE, US
Chocolate Dark 935 459.39 Irish Extra Stout FI, NZ, US
Caramel/Crystal50L 857 43.72 Foreign Extra Stout DE, FI, UK
Caramel/Crystal75L 779 75.00 Brown Porter US
RedX 721 11.98 Red IPA DE, US
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Chocolate Wheat 647 411.66 Irish Extra Stout DE, NL, US
Caramel/Crystal70l 625 69.22 English Porter FI, UK
Chocolate Rye 606 243.60 Irish Extra Stout DE, NZ, US
Caramel/Crystal140L 585 139.75 English Porter BE, CL, DE, UK, US
Blackprinz 584 500.00 Schwarzbier US
Crystal Light 566 36.06 Brown Porter AU, NZ, UK
Floor Malted
Bohemian Pilsner

545 2.15 Czech Premium
Pale Lager

DE

Coffee 531 158.31 English Porter BE, CA, CL, DE, FR,
NL, NZ, UK, US

Dextrine 524 1.75 Brown Porter FI, UK, US
Flaked Oats 478 2.07 Oatmeal Stout BE, CA, DE, NL, UK,

US
Abbey 475 17.18 Belgian Dubbel BE, DE, US
Roasted Wheat 475 49.37 Fruit Lambic AU, BE, FI, NZ, UK, US
Lager 474 1.53 British Golden Ale IE, NL, UK
Crystal Medium 472 57.59 English Porter AU, NZ, UK
Black Barley 469 525.93 Oatmeal Stout UK, US
Carastan 436 33.80 Russian Imperial Stout UK
Extra Pale 429 7.76 Belgian Specialty Ale AU, BE, CL, DE, FI,

UK, US
Darkwheat 420 6.55 Weizenbock DE
CaraCrystal Wheat 404 54.67 Brown IPA BE, US
Debittered Black 393 566.10 Imperial Stout BE
Crystal Rye 380 88.59 Black IPA NZ, UK
Dehusked CarafIII 336 470.22 Black IPA DE
Carabrown 333 55.00 American Brown Ale US
Melanoid 307 27.54 Traditional Bock BE, DE, FI, NL
Pearl 299 3.28 Strong Scotch Ale UK, US
Spelt 297 2.04 Lambic DE, NL
CaraPale 290 3.89 Irish Extra Stout BE, FI, UK, US
Caramel/Crystal100L 288 40.22 Irish Extra Stout FI, UK, US
Peated 287 2.51 Strong Scotch Ale BE, DE, UK
CaraWheat 283 46.05 Dunkles Weissbier DE, FI
Flaked Barley 283 1.62 Irish Stout DE, US
Carabelge 257 13.51 Flanders Red Ale BE, DE
Caramel/Crystal55L 241 55.09 Oud Bruin CL, UK
CaraBohemian 238 75.00 Robust Porter DE
Crystal 232 61.44 Brown Porter AU, BE, IE, NZ, UK, US
Dehusked CarafII 229 418.03 Schwarzbier DE
CaraRye 228 66.19 Black IPA DE, NZ, US
ESB 209 3.47 Mild CA, UK
Toffee 201 5.65 Irish Extra Stout NZ
CaraGold 180 33.47 Festbier BE, IE, UK, US
Gladiator 176 5.14 Fruit Lambic NZ
Chocolate Light 169 419.60 Irish Extra Stout AU, FI, NZ, UK, US
Flaked Wheat 164 2.03 Witbier BE, CA, DE, NZ, US
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Mild 136 3.11 Mild UK
Ashburne Mild 131 5.30 Dark Mild US
Aurora 125 28.43 Belgian Pale Ale, Brown

IPA
NZ

Cookie 115 19.26 British Golden Ale FI
Dehusked CarafI 115 337.29 Schwarzbier DE
Cararuby 109 21.12 Red IPA BE, UK
Caramel/Crystal300L 108 114.82 Traditional Bock FI
Redback 106 33.86 Red IPA NL, NZ
Shepherds Delight 103 144.93 Red IPA NZ
Floor Malted
Bohemian Wheat

101 1.98 Gueuze DE

Sourgrapes 101 2.18 Gose NZ
Crystalmillet 96 17.67 Helles Bock US
Kölsch 92 3.29 Kölsch DE
Buckwheat 91 2.30 Irish Stout US
Carastan Light 91 15.00 Scottish Export UK
Pale Millet 89 1.65 Old Ale US
Stout 89 18.78 Irish Stout IE
Chit 85 1.52 Scottish Light DE, NZ, UK, US
Double Roast Crystal 79 110.04 Scottish Heavy UK, US
SpecialW 79 114.72 English Porter BE, DE
Caraplus150 78 59.20 Foreign Extra Stout FI
Rice 72 58.19 American Wheat Beer US
Optic 70 2.15 Strong Scotch Ale UK
Caraplus100 66 38.00 Black IPA FI
CaraBlond 63 7.99 White IPA BE
Caramel/Crystal250L 63 94.00 Roggenbier FI
Dark 58 71.12 Brown IPA CA, DE, FI, NZ, US
Supernova 57 57.62 Brown IPA NZ
Rolled Oats 56 1.73 Scottish Heavy NZ
Flakedrice 54 0.93 American Light Lager US
Pale Crystal 52 28.92 British Strong Ale UK
Pale Rye 50 3.29 Roggenbier DE, UK, US
Red 50 22.05 Red IPA DE, FI, NL, US
Flaked Rye 49 2.29 Dry Stout US
Munich Millet 49 6.61 Scottish Light US
Black Pearl 46 350.43 Oatmeal Stout CL, FI, NZ, US
Heritage 45 6.35 Old Ale CA, UK
Flaked Corn 42 0.71 Cream Ale US
Roasted Oats 40 6.22 Belgian Dubbel CA, UK, US
Dark Roasted Millet 39 298.21 English Porter US
Caraplus200 38 76.67 Russian Imperial Stout FI
Specialx 38 128.09 Brown Porter DE
Distillers 37 2.37 Gueuze IE, NZ, US
Smoked Wheat 35 2.31 Roggenbier DE, US
Caramel/Crystal200l 32 83.38 British Strong Ale BE, FI, UK, US
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Lager Light 32 1.43 Fruit Lambic NZ
Fullpint 30 3.45 Strong Bitter US
Heidelberg 26 1.34 Munich Helles DE
Opal 44 24 35.33 American Amber Ale US
CaraMillet 22 32.32 Irish Red Ale US
Enzyme 21 0.40 Red IPA FI
Pale Compass 21 2.69 Old Ale AU
Red Crystal 21 98.59 Foreign Extra Stout UK
Light Roasted Millet 20 6.70 Irish Red Ale US
Base 19 1.97 Rye IPA NZ, US
Caramel/Crystal400L 19 198.24 British Strong Ale CA, DE, FI, UK
Caramel/Crystal65L 19 65.00 Scottish Light UK, US
Caraplus250 19 97.26 American Light Lager FI
Lamonta 19 2.89 Belgian IPA US
Barley 18 195.82 Imperial Stout BR, DE, NL, NZ
Golden 18 4.07 Gose FI, US
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Table D: Hop List

Hop Name Recipes Alpha Styles Countries

Cascade 18582 6.91 American Barleywine, Amer-
ican Pale Ale, etc.

United States

Citra 15950 11.88 American IPA, Double IPA,
Black IPA, etc.

United States

Centennial 11046 9.79 American Barleywine United States
Amarillo 10867 8.60 Belgian IPA United States
East Kent Golding 9833 5.15 British Strong Ale, Scottish

Export, Strong Bitter, etc.
United Kingdom

Magnum 9696 13.90 Altbier Germany
Simcoe 9223 12.96 Imperial IPA United States
Mosaic 9151 12.58 New England IPA United States
Columbus 8245 15.01 Imperial IPA United States
Chinook 7568 12.68 American Barleywine United States
Saaz 6772 3.48 Bohemian Pilsner, Czech Pre-

mium Lager, etc.
Czech Republic

Fuggle 6538 4.57 Mild United Kingdom
Hallertau 5328 3.88 Munich Helles Germany
Willamette 4786 4.69 American Brown Ale United States
Galaxy 3995 14.44 New England IPA Australia
Northernbrewer 3926 7.95 California Common United States
Warrior 3127 15.90 Double IPA United States
Nugget 3052 13.66 Old Ale United States
Tettnanger 2986 4.18 Altbier Germany
Styrian Gold 2816 4.87 Belgian Golden Strong Ale Slovenia
Perle 2721 7.67 Doppelbock Germany
Hersbrucker 2572 3.68 Munich Dunkel Germany
El Dorado 2240 15.06 New England IPA United States
Challenger 2221 7.91 Strong Bitter United Kingdom
Nelson Sauvin 2159 12.17 Brown IPA New Zealand
Golding 1671 4.83 British Strong Ale United States
Azacca 1549 13.75 New England IPA United States
Mandarina Bavaria 1330 8.33 White IPA Germany
Summit 1225 17.28 Black IPA United States
Target 1207 10.78 Strong Bitter United Kingdom
Motueka 1193 6.84 Belgian IPA New Zealand
Crystal 1158 4.18 Brown Porter, Cream Ale United States
Mounthood 1105 5.06 Cream Ale United States
Galena 1076 13.00 Fruit Lambic United States
Ekuanot 949 15.20 New England IPA United States
Hallertau Blanc 912 9.40 Gose Germany
Cluster 910 6.87 Cream Ale United States
Sorachi Ace 887 11.46 Saison Japan
Apollo 814 18.98 Imperial IPA United States
Ahtanum 788 5.50 Brown IPA United States
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Bravo 760 15.19 White IPA United States
Falconer’s Flight 738 10.16 Black IPA United States
Liberty 725 4.19 Cream Ale United States
Lemondrop 712 5.80 Berliner Weisse United States
Hullmelon 693 6.75 Saison Germany
Vic Secret 624 16.34 New England IPA Australia
Sterling 571 8.42 Doppelbock United States
Bramling Cross 545 6.40 Old Ale United Kingdom
Brewer’s Gold 524 8.28 Belgian Dark Strong Ale United Kingdom
Horizon 518 12.19 American Amber Ale United States
Spalt 510 4.17 Altbier Germany
Idaho 7 503 13.08 New England IPA United States
Hallertauer Tradition 481 5.43 Festbier Germany
Calypso 466 13.08 Fruit Lambic United States
Glacier 463 5.42 Irish Stout United States
First Gold 444 7.84 British Golden Ale United Kingdom
Comet 397 10.48 Brown IPA United States
Pacific Gem 385 14.90 White IPA New Zealand
Zeus 377 16.13 Belgian IPA United States
Northdown 372 8.20 Best Bitter United Kingdom
Admiral 346 14.22 British Golden Ale United Kingdom
Pacific Jade 345 13.26 Brown IPA New Zealand
Loral 340 11.68 Fruit Lambic United States
Rakau 325 10.44 Red IPA New Zealand
Sabro 323 14.61 New England IPA United States
Strisselspalt 292 3.98 Lambic France
Zythos 286 10.72 Belgian Specialty Ale United States
Cashmere 279 7.96 Gueuze United States
Palisade 278 7.66 American Strong Ale United States
Aurora 275 8.21 Belgian Pale Ale, Brown IPA Slovenia
Equinox 265 13.83 Brown IPA United States
Belma 262 10.26 American Barleywine United States
Wakatu 256 7.36 Irish Extra Stout New Zealand
Ella 247 14.72 British Golden Ale Australia
Waimea 240 16.55 Belgian IPA New Zealand
Denali 235 14.12 Belgian IPA United States
Waiiti 234 2.97 Lambic New Zealand
Herkules 229 15.33 Weizenbock Germany
Pacifica 226 5.14 Czech Pale Lager New Zealand
Tomahawk 223 14.79 Brown IPA United States
Saphir 214 3.94 Festbier Germany
Jarrylo 201 14.84 Rye IPA United States
Topaz 199 15.76 White IPA Australia
Southern Cross 194 12.74 Old Ale New Zealand
Greenbullet 188 11.71 Red IPA New Zealand
Pilgrim 184 10.26 British Golden Ale United Kingdom
Kohatu 163 6.62 Belgian IPA New Zealand
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Progress 159 6.29 Best Bitter United Kingdom
Southern Star 158 11.28 British Golden Ale South Africa
Dr.Rudi 156 11.43 Berliner Weisse New Zealand
Summer 155 6.10 Fruit Lambic Australia
Polaris 152 19.19 Brown IPA Germany
Pekko 144 15.09 Irish Extra Stout United States
Enigma 143 15.77 Fruit Lambic Australia
Eureka 139 16.82 British Golden Ale United States
Riwaka 138 5.28 Belgian IPA New Zealand
Phoenix 135 10.52 Irish Extra Stout United Kingdom
Millennium 132 15.67 English Barleywine United States
Celeia 116 3.57 Trappist Single Slovenia
Strata 116 12.77 New England IPA United States
Vanguard 114 5.12 Vienna Lager United States
Spalterselect 110 4.36 Festbier Germany
Medusa 104 3.96 New England IPA United States
Pride of Ringwood 103 9.76 American Lager Australia
Bullion 98 8.36 Scottish Heavy United Kingdom
Columbia 91 10.38 Traditional Bock United States
Moutere 85 17.72 Belgian IPA New Zealand
African Queen 84 12.14 British Golden Ale South Africa
Bru1 84 14.41 New England IPA United States
Santiam 79 6.62 Gose United States
Southern Promise 77 11.46 Brown IPA Slovenia
Aramis 76 7.17 Saison France
Bobek 76 4.84 Belgian Tripel Slovenia
Opal 74 6.88 Gueuze Germany
Taiheke 68 7.16 British Strong Ale New Zealand
Archer 66 4.43 Old Ale United Kingdom
Premiant 64 8.91 Czech Pale Lager Czech Republic
Lublin 63 4.39 Roggenbier Poland
Meridian 63 7.00 Red IPA United States
Kazbek 62 6.00 Munich Dunkel Czech Republic
Marynka 62 8.53 Belgian IPA Poland
Sladek 61 6.40 Czech Premium Pale Lager Czech Republic
Newport 60 13.44 Scottish Light United States
Jester 59 8.57 British Golden Ale United Kingdom
Styrian Wolf 52 12.66 English Barleywine Slovenia
Sovereign 51 5.42 British Golden Ale United Kingdom
Pioneer 47 8.87 British Golden Ale United Kingdom
Callista 45 3.79 Weizenbock Germany
Hallertauer 42 4.56 Festbier Germany
Superalpha 42 12.75 English IPA New Zealand
Triskel 41 4.86 Fruit Lambic France
Ariana 38 10.60 Belgian Specialty Ale Germany
Mount Rainier 38 6.18 Munich Dunkel United States
HBC472 37 9.65 Cream Ale United States
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Zappa 37 6.38 New England IPA United States
Sticklebract 31 11.76 American Light Lager New Zealand
Superpride 31 13.80 British Golden Ale Australia
Pahto 30 17.07 Belgian Specialty Ale United States
Helga 29 5.93 Gose Australia
Sonnet 29 5.22 Strong Scotch Ale United States
Boadicea 28 7.01 British Golden Ale United Kingdom
HBC438 27 15.66 White IPA United States
Olicana 27 7.89 English IPA United Kingdom
Dana 26 11.81 Old Ale Slovenia
Endeavour 26 9.07 Mild United Kingdom
HBC342 26 11.94 Imperial IPA United States
Julius 26 7.36 English IPA United States
Smaragd 25 5.67 Weizenbock Germany
Ultra 25 5.09 American Lager United States
Caliente 24 14.22 American Barleywine United States
Legacy 24 7.75 British Golden Ale United States
Minstrel 23 6.05 Weizenbock United Kingdom
Delta 22 6.39 British Strong Ale United States
Sybilla 20 5.67 Fruit Lambic Poland
Merkur 19 12.85 Schwarzbier Germany
Michigan Copper 19 9.32 Rye IPA United States
Tahoma 19 6.69 Trappist Single United States
Triplepearl 19 9.55 Helles Bock United States
Hallertauer Taurus 17 15.50 Altbier Germany
Monroe 17 3.36 American Strong Ale Germany
Lubelska 16 4.39 Belgian Specialty Ale Poland
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Figure A: An Abridged Sample BeerXML File

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <RECIPE>
3 <NAME>Avg . Pe r f e c t Northeast IPA (NEIPA)</NAME>
4 <VERSION>1</VERSION>
5 <TYPE>Al l Grain</TYPE>
6 . . .
7 <FERMENTABLES>
8 <FERMENTABLE>
9 <NAME>Pale 2−Row</NAME>

10 <TYPE>Grain</TYPE>
11 <AMOUNT>4.8761179775</AMOUNT>
12 <YIELD>80 .43</YIELD>
13 <COLOR>1 .8</COLOR>
14 </FERMENTABLE>
15 . . .
16 </FERMENTABLES>
17 <HOPS>
18 <HOP>
19 <NAME>Citra</NAME>
20 <ALPHA>12 .6</ALPHA>
21 <AMOUNT>0.0283495231</AMOUNT>
22 <USE>Boi l</USE>
23 <USER HOP USE>Boi l</USER HOP USE>
24 <TIME>10</TIME>
25 <FORM>P e l l e t</FORM>
26 </HOP>
27 . . .
28 </HOPS>
29 <MISCS>
30 <MISC>
31 <NAME> I r i s h Moss</NAME>
32 <TYPE>Fining</TYPE>
33 <USE>Boi l</USE>
34 <TIME>15</TIME>
35 <AMOUNT>0.00246446</AMOUNT>
36 </MISC>
37 . . .
38 </MISCS>
39 . . .
40 <STYLE>
41 <NAME>S p e c i a l t y IPA: New England IPA</NAME>
42 <CATEGORY>IPA</CATEGORY>
43 <CATEGORYNUMBER>21</CATEGORYNUMBER>
44 <STYLE LETTER>B</STYLE LETTER>
45 <STYLE GUIDE>BJCP</STYLE GUIDE>
46 <TYPE>Ale</TYPE>
47 . . .
48 </STYLE>
49 </RECIPE>
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Figure B: Stress Test - Kölsch

(A) Targeted Attacks

(B) Random Attacks

Note: Both panels depict the impact of removing 40%, 60% or 80% of the nodes from the Kölsch
network. Panel BA shows the effect of targeted deletion according to eigenvector centrality. Panel
BB shows a random attack where nodes are deleted in random order.
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Figure C: Resiliency Against Random Removal - Kölsch

(A) Net Density (B) Net Diameter

(C) Avg. Clustering Coefficient (D) Avg. Degree
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Figure D: Example Networks

(A) English IPA

Nodes Density Diameter Clustering Avg. Degree

263 0.19 1.16 0.45 49

(B) Munich Helles

Nodes Density Diameter Clustering Avg. Degree

98 0.16 1.85 0.42 15.39

49



Figure E: Network Correlations
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