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Abstract

This paper develops a Monte-Carlo backtesting procedure for risk premia strategies and

employs it to study Time-Series Momentum (TSM). Relying on time-series models, empirical

residual distributions and copulas we overcome two key drawbacks of conventional backtesting

procedures. We create 10,000 paths of different TSM strategies based on the S&P 500 and a

cross-asset class futures portfolio. The simulations reveal a probability distribution which shows

that strategies that outperform Buy-and-Hold in-sample using historical backtests may out-of-

sample i) exhibit sizable tail risks ii) underperform or outperform. Our results are robust to

using different time-series models, time periods, asset classes, and risk measures.
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1 Introduction

Many investment strategies such as risk-premia strategies are (back-)tested using historical data.

Rietz (1988), Barro (2006) and Farhi & Gabaix (2016) emphasize the importance of tail events for

understanding risk-premia. Historical data, however, contain few tail events, making it difficult

for a backtest to judge i) the true risks involved in a strategy and ii) the chances of a strategy to

outperform a benchmark in the long-term.1

In order to overcome these backtesting problems, several papers have employed bootstrapping

procedures. Yet, existing bootstrapping procedures are unsuitable for our analysis as they i) do

not preserve the time-series and cross-sectional dependencies of returns and ii) re-employ the same

extreme residuals again and again. Thus, while boostrapping can replicate past historic tail events,

it cannot generate a sufficiently large variety of possible future tail events to robustly examine a

strategy. We develop a Monte-Carlo backtesting procedure that addresses these issues.

Monte-Carlo methods are popular in finance to price derivatives, and to stress test balance

sheets, yet are rarely used to assess risk-premia strategies. Our approach involves parameterizing

several plausible time-series processes by fitting them to actual data, and then empirically estimat-

ing the distributions of the residuals and their dependencies across assets using copulas to create

new generic residuals. We then backward transform our generated residuals, using the empirical

distributions and the estimated time-series processes, to create new returns with the same statisti-

cal properties as in the original data. This process gives us many different possible realizations on

which to test investment strategies, get an overall distribution of their outcomes, and examine their

characteristics.

We illustrate our approach using a set of investment strategies called Time-Series Momentum

(TSM). Jegadeesh & Titman (1993) first document Cross-Sectional Momentum (CSM) returns that

arise from a market-neutral portfolio of stocks that buys winners and sells losers ranked according

1Bailey & López de Prado (2014), among others, criticize these backtesting procedures for hiding the asymptotic
properties of investment strategies.
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to their past relative performance. More recently, Moskowitz et al. (2012) and Hurst et al. (2017)

have documented the presence of Time-Series Momentum across asset classes. TSM takes a non-

market-neutral exposure in, for example, an index based on its past own performance.

It is not well-understood how such a simple rule can earn returns in excess of Buy-and-Hold

(BH) in historical backtests, making it the subject of much interest. Fama & French (1996, 2008)

call Momentum the ”premier anomaly” and a ”main embarassment” for the standard theory. Such

anomalies are usually explained either as a risk, a bias or a statistical artifact.2 However, the

characteristics of a Time-Series Momentum strategy (it involves trading based on a set of fixed rules

and it combines multiple assets) that make it difficult to examine using conventional backtests, also

make it suitable to be analyzed within our framework.

Figure 1 shows how our methodology can be used, for example, to identify hidden risks or to

evaluate the chances of a strategy to perform out-of-sample: Panel A of Figure 1 shows a litera-

ture standard backtest based on the historical data from 1985.1-2009.12.3 The data shown in this

panel reveal that a Long-Short Time-Series Momentum strategy (LS-TSM) has higher risk-adjusted

returns than BH. Tail events are crucial to understand this outperformance. Without the severe

market decline around month 200 (during a recession in the early 2000s), the strategy underper-

forms BH in the overall sample.

Panels B, C, and D show three of the 10,000 simulated paths from an autoregressive model with

24 lags. While Panel B confirms the conclusions of the conventional backtest of Panel A that out-

performance of this particular LS-TSM strategy can be a long-run outcome, Panels C and D reveal

2The first explanation views return anomalies as a risk compensation and stipulates that asset pricing is rational
and can be reconciled with a multi-factor version of the capital asset pricing model (CAPM) or arbitrage pricing theory
(APT). Contributors to this line of literature are, among many others, Fama & French (1993, 2016), Jagannathan
& Wang (1996), Rietz (1988), Barro (2006), and Farhi & Gabaix (2016). The second views return anomalies as
behavioral biases that result in mispricing. Explanations that follow this path include, among many others, De Bondt
& Thaler (1990), De Long et al. (1990), MacKinlay (1995), Shleifer & Vishny (1997), Grinblatt & Han (2005),
DellaVigna & Pollet (2009), and Hirshleifer (2015). The third views return anomalies as statistical artifacts, see e.g.
Lo & MacKinlay (1990), Black (1993), Kothari et al. (1995), Jorion & Goetzmann (1999), Mclean & Pontiff (2016),
and Harvey et al. (2016).

3Figure 1 computes a Long-Short Time-Series Momentum strategy with a 9-months lookback window on the S&P
500. Such a strategy shorts the S&P 500 if the cumulative return of the past 9 months is negative and buys the
S&P500 if the cumulative return of the past 9 months is positive. A rebalancing is conducted at the last day of each
month.
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Figure 1: Time-Series Momentum vs. Buy-and-Hold

50 100 150 200 250 300
Months

100

101

In
de

x/
St

ra
te

gy

A. S&P 500 1985.1-2009.12 Cummulative Returns

Buy-and-Hold Strategy
9-Months Lookback LS-TSM

50 100 150 200 250 300
Months

10-1

100

101

In
de

x/
St

ra
te

gy

B. Generic Cummulative Returns (Model 8), Path #624

Buy-and-Hold Strategy
9-Months Lookback LS-TSM

50 100 150 200 250 300
Months

10-1

100

101

In
de

x/
St

ra
te

gy

C. Generic Cummulative Returns (Model 8), Path #1335
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Notes: Panel A shows the performances of an unleveraged Long-Short Time-Series Momentum strategy with a
9-months lookback window and of a Buy-and-Hold strategy on the S&P 500 (monthly rebalanced) during 1985.1
and 2009.12. Table 3 summarizes these findings and reveals that Momentum achieves a monthly Sharpe ratio
of 0.20, Buy-and-Hold of 0.16. Panels B,C and D show three of the 10,000 paths obtained through simulations
based on an MA(12) model. Panels E and F are two excerpts from Panels C and D in which Momentum
significantly underperforms Buy-and-Hold.
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that this strategy may also significantly underperform. Later in Section 3 we document that this

particular LS-TSM strategy underperforms BH in more than 84% of the 10,000 simulated paths.

Other TSM strategies do outperform in both historical backtests and Monte-Carlo simulations.

Likewise, Panels E and F reveal two hidden risks of the LS-TSM strategy. Panel E reveals that,

after a drawdown of the market, LS-TSM shorts the market while BH is long when the market

recovers, thus, leading to a LS-TSM underperformance of almost 40% over a period of 11 months.

Panel F shows that during an innocently looking sideways movement of the market, LS-TSM un-

derperforms by almost 50% in 25 months.

Convincing risk explanations of Momentum remain scarce. Berk et al. (1999), Johnson (2002),

Sagi & Seasholes (2007) provide rational models based on growth options, Chordia & Shivakumar

(2002) and Ahn et al. (2003) emphasize macroeconomic risk, Cespa & Vives (2012) and Albuquerque

& Miao (2014) highlight the role of information. While many of these explanations may apply to

CSM, few apply to TSM which, as a strategy, creates a portfolio exposure based on some past

history of returns, and is often not-market neutral. This is why we focus on a CSM strategy

that puts strategy crashes into the spotlight, see e.g. Barroso & Santa-Clara (2015) and Daniel

& Moskowitz (2016). We differ from these papers in that our method can also be used to reveal

out-of-sample risks, risk-return trade-offs, and possible data-snooping bias in the implementation

of the strategy.

In order to examine the significance of financial anomalies, out-of-sample tests have often been

suggested as another alternative to in-sample historical backtesting, see e.g. Inoue & Kilian (2005),

Rapach & Wohar (2006), Hubrich & West (2010), Clark & McCracken (2012), and Rossi & Inoue

(2012), and Mclean & Pontiff (2016). Since such tests typically require splitting the historical sam-

ple into two or more parts, they suffer to an even larger extent from a problem highlighted earlier,

i.e. the low number of tail events, which further reduces when the sample is split.

To overcome this data limitations, researchers create new generic returns by using bootstrap-

ping methods. However, proper bootstrapping of financial data needs to take into consideration the
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fact that returns are not independent and should not be directly bootstrapped. Instead, adjust-

ments need to be made to preserve the dependency structure of the series. One of those methods,

block bootstrapping, involves resampling blocks of returns. A second approach, and similar to our

method, involves fitting a statistical model, resampling the residuals, and then generating a new

pseudo-series by applying the estimated model to the residuals.

This latter method of bootstrapping has been employed in testing trading rules (Brock et al.

(1992), Conrad & Kaul (1998), LeBaron (1999), Sullivan et al. (1999, 2001), Maillet & Michel

(2000), Taylor (2000), Jegadeesh & Titman (2002), White (2000), Karolyi & Kho (2004), Qi & Wu

(2006)), Jegadeesh & Titman (2015), fund manager performance (Fama & French (2010), Kosowski

et al. (2006)), other predictive factors of returns (Harvey et al. (2016), Yan & Zheng (2017), and

the impact of leverage Engle & Siriwardane (2017). Some papers attempt to preserve the time-series

dependencies, while others preserve the cross-sectional dependencies. Yet, none preserve both, and

all suffer from the same lack of variety of tail events.

In contrast, our Monte-Carlo procedure overcomes these drawbacks by using time-series models,

copulas, and the empirical residual distribution to generate a large variety of new residuals (instead

of resampling) while maintaining the dependency structure across residuals and time. Applying the

tools of Extreme Value Theory in this way is more commonly used in the risk management litera-

ture, which frequently uses Monte-Carlo methods for stress-testing, see e.g. Nyström & Skoglund

(2002a,b).4

The paper proceeds as follows. Section 2 explains the methodology and its implementation.

Section 3 discusses the empirical findings. Section 4 interprets them while Section 5 concludes.

4Monte-Carlo methods have been employed by few papers in the literature on market anomalies. Evans & Lewis
(1994, 1995) use Monte-Carlo methods to study risk-premia in the bond and in the forward exchange markets, Conrad
& Kaul (1998) to assess Momentum (but without preserving the time-series or cross-sectional structure), Bollerslev
et al. (2011) to study the volatility risk premium, Creal & Wu (2016) to study time variation in bond term premia.
The way these papers employ Monte-Carlo methods is not directly related to what we do.
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2 Methodology and Implementation

We implement our methodology in four steps: First, we estimate a variety of plausible time-series

models (such as autoregressive or moving average models) to statistically describe the historical

returns of different assets. Next, using our estimated models, we back out the residuals and de-

termine their distribution using a Kernel estimator. We then apply the inverse of these estimated

distributions to a series of new random numbers to obtain generic residuals that have the same

statistical properties as the actual ones. Next, we reintroduce statistical features such as autocor-

relation and heteroskedasticity from our estimates into the new residuals to create generic returns

that have the same statistical properties as the ones in the historical data. Finally, we compute

various Momentum and Buy-and-Hold strategies using the generic returns.

2.1 Data Description

We use monthly futures prices on 27 different assets including 9 equity markets futures (S&P 500,

DAX, FTSE 100, CAC 40, AEX, IBEX 35, S&P/TSX 60, Nikkei 225, Hang Seng indices), 4 bonds

futures (US 30y Treasury Bonds, US 10y Treasury Notes, UK 10y Treasury Bonds, Japanese 10y

Treasury Bonds), 8 commodities futures (Gold, Silver, Crude Oil, Unleaded Gasoline, Heating Oil,

Cotton, Coffee, Wheat), and 6 currencies futures (EUR/USD, JPY/USD, GBP/USD, CHF/USD,

CAD/USD, AUD/USD). Before conducting any calculations, foreign denominated prices are all

converted into USD using the USD spot exchange rate. The series are rolled at the end of each

month into the front month contract. Prior to the availability of futures contracts we use excess

return spot indexes instead. This procedure allows us to construct a cross-asset class portfolio from

1989.2 to 2018.12. For the S&P 500 we can go back even a bit further an obtain an overall sample

ranging from 1985.1 to 2018.12.

We conduct all analysis parallel for both the i) S&P 500 and the ii) cross-asset class portfolio

of 27 assets, including the S&P500. We divide our data into two periods: i) in-sample 1985.1
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to 2009.12 (for the S&P500) and 1989.2 to 2018.12 (for the cross-asset class portfolio) ii) out-of-

sample 2009.12-2018.12. The in-sample period is what Moskowitz et al. (2012) also use. The

out-of-sample period serves as a robustness sample to check the predictions of both conventional

and Monte-Carlo backtesting procedures. In our calculations, we rely on excess return indexes (as

opposed to total return indexes) as the fundamentally different interest regimes in the two sample

periods may undermine any meaningful analysis.

2.2 Step 1: Estimating Time-Series Models

In this section we separately estimate the statistical processes underlying the returns of each of the

27 assets. We rely on autoregressive and moving average time-series models since those models are

most suitable to capture the dynamics behind Time-Series Momentum. As the previous literature

indicates, Time-Series Momentum effects are strong with lookback windows up to 12 months. This

finding determines the maximum number of lags that we choose for our analysis. Since there is no

model agreed upon by the literature that perfectly captures all the statistical properties of returns,

we estimate eight different basic models. As a robustness test, in Appendix C, we estimate eight

additional models with more advanced dynamics. This analysis supports our main conclusions that

we reach using the basic models. The sixteen models employed in this paper are not the only models

that one could examine, however, we believe they capture the salient characteristics of returns that

might make TSM strategies viable. We leave it to the reader to extend our analysis further by

including other models. The log return of the asset j is given by

rj,t = ln
Pj,t

Pj,t−1
(1)

where Pj,t denotes the asset j’s excess return index value at time t. The first set of models that

we employ are simple autoregressive AR(n) Models. We estimate these models using three, six,

nine, and twelve lags, from a period of one quarter up to one year. Formally,
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rj,t = µj +
n

∑
k=1

φj,krj,t−k + εj,t (2)

where µj is a constant; φj,k denotes the autoregressive coefficient at lag k; zj,t = εj,t/σj,t i.i.d.

distributed t(ν) is the standardized residual and modeled as a standardized Student’s t-distribution

to account for fat tails. In our models, n = 3,6,9,12. The second set of models that we employ are

simple moving average MA(n) Models. Again, we estimate these models using three, six, nine,

and twelve lags, from a period of one quarter up to one year. Formally,

rj,t = µj +
n

∑
k=1

θj,kεj,t−k + εj,t (3)

where θ denotes the moving average coefficient. To summarize, we estimate the following eight

models for each asset class, using the in-sample data: Model 1: AR(3), Model 2: MA(3), Model

3: AR(6), Model 4: MA(6), Model 5: AR(9), Model 6: MA(9), Model 7: AR(12), Model 8:

MA(12).

Table 1, for example, contains the estimated coefficients for these eight models based on the

data for the S&P 500 during the period 1985.1-2009.12. As Table 1 shows, the lags in the AR and

MA models are mostly insignificant suggesting that Momentum may not be very strong in these

data.

2.3 Step 2: Creating New Residuals

We back out the standardized residuals zj,t from the regressions of step 1 and estimate their dis-

tribution using a Kernel estimator. Figure 2 plots the residuals probability across all eight models

for the S&P 500. Having obtained the distributions, for each of the eight models, we create 10,000

paths of uniformly distributed true random numbers as the new residuals. Each path has a length

equivalent to that of the historical in-sample period. We then apply the inverse distribution function

to turn the new residuals into generic residuals with distributional properties identical to those of
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Table 1: Parameter Estimates for the S&P 500 Excess Return Index (1985.1-2009.12)

parameter value t-stat parameter value t-stat

Model 1: AR(3) µ 0.01 4.30 Model 6: MA(9) µ 0.01 3.88
φ1 0.03 0.69 θ1 0.03 0.72
φ2 -0.06 -1.24 θ2 -0.06 -1.22
φ3 -0.02 -0.53 θ3 -0.02 -0.32

θ4 -0.02 -0.44
Model 2: MA(3) µ 0.01 4.23 θ5 0.08 1.68

θ1 0.03 0.66 θ6 0.00 -0.07
θ2 -0.06 -1.22 θ7 0.02 0.42
θ3 -0.02 -0.39 θ8 -0.01 -0.25

θ9 0.03 0.59
Model 3: AR(6) µ 0.01 4.06

φ1 0.03 0.60 Model 7: AR(12) µ 0.01 3.76
φ2 -0.05 -1.10 φ1 0.03 0.67
φ3 -0.02 -0.38 φ2 -0.06 -1.18
φ4 -0.02 -0.49 φ3 -0.01 -0.12
φ5 0.07 1.60 φ4 -0.03 -0.56
φ6 -0.01 -0.19 φ5 0.08 1.77

φ6 -0.02 -0.39
Model 4: MA(6) µ 0.01 4.01 φ7 0.04 0.80

θ1 0.03 0.62 φ8 -0.02 -0.45
θ2 -0.06 -1.21 φ9 0.04 0.78
θ3 -0.01 -0.29 φ10 -0.03 -0.69
θ4 -0.03 -0.56 φ11 0.03 0.58
θ5 0.08 1.76 φ12 0.02 0.31
θ6 -0.01 -0.18

Model 8: MA(12) µ 0.01 3.83
Model 5: AR(9) µ 0.01 3.81 θ1 0.03 0.71

φ1 0.03 0.71 θ2 -0.06 -1.18
φ2 -0.05 -1.16 θ3 -0.01 -0.26
φ3 -0.01 -0.20 θ4 -0.02 -0.41
φ4 -0.03 -0.52 θ5 0.07 1.58
φ5 0.08 1.71 θ6 0.00 -0.03
φ6 -0.01 -0.28 θ7 0.02 0.49
φ7 0.04 0.78 θ8 -0.01 -0.28
φ8 -0.02 -0.39 θ9 0.03 0.56
φ9 0.04 0.77 θ10 -0.02 -0.42

θ11 0.01 0.26
θ12 0.02 0.36

Notes: This table shows the parameter estimates obtained from the models described in Section 2.2. The
underlying data are the monthly log-returns of the S&P 500 during the in-sample period 1985.1-2009.12.

the standardized residuals backed out from the historical data.

For the S&P 500 alone this process is straightforward, yet for the cross-asset class portfolio

it is not. The main reason is the dependency of residuals across assets, i.e. the time-varying

residual correlation. The appropriate tool that we employ to generate residuals with a time-varying

dependency structure relies on copulas. An m-dimensional copula is a joint distribution function
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on [0,1]m with all marginal distributions being standard uniform. Let F be a joint distribution

function and Fj , j, ...,m be the marginal distributions. Then there exists a copula C ∶ [0,1]m → [0,1]

such that

F (x1, ..., xm) = C(F1(x1), ..., Fm(xm)) (4)

for all x1, x2, ...., xm ∈ [−∞,∞]. Let Θ = {(ν,Σ) ∶ ν ∈ (1,∞),Σ ∈ Rmxm}. The Student’s t-copula can

be written as

CΘ(u1, u2, ..., um) = tν,Σ(t−1
ν (u1), t

−1
ν (u2), ..., t

−1
ν (um)) (5)

where tν,Σ is the multivariate Student’s t distribution with a correlation matrix Σ with ν degrees

of freedom. When using copulas to describe dependence between asset returns, we do not need to

make any assumptions about their marginal distributions. The process of using copulas also allows

us to estimate the dependence structure, separately from the marginal distributions. A major ben-

efit of this approach, as opposed to bootstrapping, is that we can generate returns for each asset,

and have the aggregate series match the correlation across assets. If however, we were to bootstrap

returns, each selection requires us to choose the unique set of returns across the assets at a certain

date in order to maintain their cross correlation structure.

We first transform the standardized residuals to uniform residuals by the Kernel empirical

CDF and then fit the t-copula to the transformed data. To estimate the parameters ν and Σ

for each of the eight models we use a maximum likelihood approach. Once we have obtained the

parameter estimates we can use them to generate new uniformly distributed residuals maintaining

the correlation structure. We then apply the inverse distribution function to turn the new residuals

into generic residuals with distributional properties identical to those of the standardized residuals

backed out from the historical data. It is perhaps important to stress that this last step does not

impair the correlation structure.
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Figure 2: Residual Distribution of the S&P 500 Excess Return Index (1985.1-2009.12)
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Model 2: MA(3)
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Model 3: AR(6)
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Model 4: MA(6)
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Model 5: AR(9)
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Model 6: MA(9)
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Model 7: AR(12)
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Model 8: MA(12)

Notes: This figure shows the Kernel distribution estimates described in Section 2.3 obtained from the residuals
backed out from the eight models described in Section 2.2. The underlying data used in the models’ estimation
are the monthly log-returns of the S&P 500 1985.1-2009.12.

2.4 Step 3: Creating Generic Returns

We use the generic standardized residuals obtained in step 2 as the input noise process into Models

1-8 to obtain generic returns with the autocorrelation patterns observed in the actual data. Table 2

compares the actual with the generic returns for the S&P 500 and the cross-asset class portfolio. For

the S&P 500, the table shows that the mean of the monthly generic returns matches the historical

data’s mean return of 0.60%. For the cross-asset class portfolio the mean is computed using equal

weights on all portfolio components. The table shows that the mean generic returns is slightly

higher than in the historical data (0.43% vs. 0.2%). For the variance, generic and historical means

are identical at second digit precision for both the S&P 500 nor the cross-asset class portfolio.

In order to verify the similarities between the generic and historic return distributions, we

conducted a two sample Kolmogorov-Smirnov test with the Null that the distributions are identical.

As Table 2, we fail to reject the Null in all of the cases by quite some margin — at the 45%
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significance level to be precise. In addition, we also test whether the distributions of squared

returns are identical. Again, we cannot reject the Null at the 45% significance level for neither the

S&P 500 nor the cross-asset class portfolio. These result support the conclusion that the generic

returns have properties comparable to the those of the historical returns.

2.5 Step 4: Computing Investment Strategies

We use both historic and generic returns to compute and compare a variety of Time-Series Momen-

tum investment strategies. Since volatility weighting (risk-parity) may increase investment returns

(see e.g. Kim et al. (2016)) we compute all our strategies in a volatility adjusted and unadjusted

variant. Volatility weighting usually has the goal of making returns across asset classes with differ-

ent risk levels more comparable (see e.g. Maillard et al. (2010)). The adjustment entails weighting

the return of asset j in period t by the asset’s own past volatility. Formally, this exponentially

weighted moving average volatility is given by

φj,t−1 =

√
12µS&P500

√
12

∑12
i=1 e

(1−i)α ∑
12
k=1 e

(1−k)α(rj,t−k − µj,t−1∶t−12)
2

(6)

where µS&P500 is the monthly variance of the S&P 500 log-returns during the in-sample period

1985.1-2009.12 which, as Table 2 shows, amounts to 0.21%. The effect of this term is that the

leverage factor for each asset is scaled relative the S&P 500. Thereby, assets with lower volatility

than the S&P 500 become more leveraged and assets with higher volatility are less leveraged. The

exponentially weighted moving average volatility. α ∈ (0,1) is a constant governing the degree of

decay of the exponential weighting. µj,t−1∶t−12 denotes the exponentially weighted return variance

during the 12 months period.

As benchmark we consider a simple Buy-and-Hold strategy. The period t return to this strategy

is given by:
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qBH,t =
1

∣J ∣
∑
j∈J

[exp(rj,t) − 1]. (7)

where j = 1,2, ...,27 ∈ J . The volatility weighted benchmark equivalent is given by qBH,vol−adj,t =

1
∣J ∣ ∑j∈J φj,t−1[exp(rj,t) − 1]. As the baseline Momentum strategy, we consider a Long-Short Mo-

mentum strategy. This strategy considers a signal within a lookback window that determines

whether to go long or short the next period’s return. The signal to go long or short is the sign

of the return that occurred during the lookback window. For example, using a nine-month look-

back window, one would short the asset for next period if the returns over those nine months were

negative. Various papers in the literature also use different holding-periods, periods to remain

long or short after receiving the signal, and they report strong Momentum effects for holding pe-

riods less than a year. In our paper, we use a holding period of one month which is common practice.

Our Long-Short strategy will thus be equivalent to the Buy-and-Hold strategy if the cumulative

return over the lookback window t − k − 1 → t − 1 is positive, and shorts Buy-and-Hold otherwise.

More specifically, the period t return to this strategy is given by

qLS,t =
1

∣J ∣
∑
j∈J

[exp(rj,t) − 1] ×
Pj,t−1/Pj,t−1−k
∣Pj,t−1/Pj,t−1−k∣

where k = 1,3,6,9,12. (8)

The volatility adjusted variant is given by qLS,vol−adj,t = 1
∣J ∣ ∑j∈J φj,t−1×[exp(rj,t)−1]×

Pj,t−1/Pj,t−1−k
∣Pj,t−1/Pj,t−1−k ∣ .

As an additional Momentum strategy, we consider a Long-Cash Momentum, which yields returns

equivalent to Buy-and-Hold if the cumulative return over the lookback window t − k − 1 → t − 1 is

positive, and is 0 (not invested in the market) otherwise. More specifically, the return to this

strategy is given by

qLC,t =
1

∣J ∣
∑
j∈J

[exp(rj,t) − 1] ×max{
Pj,t−1/Pj,t−1−k
∣Pj,t−1/Pj,t−1−k∣

,0} where k = 1,3,6,9,12. (9)

The volatility adjusted variant is qLC,vol−adj,t = 1
∣J ∣ ∑j∈J φj,t−1×[exp(rj,t)−1]×max{

Pj,t−1/Pj,t−1−k
∣Pj,t−1/Pj,t−1−k ∣ ,0}.
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In addition we restrict our Momentum strategies when the cumulative returns reach zero, they will

stay at zero instead of potentially becoming infinitely negative. Any real-life implementation of

these strategies would require such limited liability. Having defined our core strategies, we will

now examine them using a range of parameter values. Appendix A offers, as a robustness test, an

alternative Time-Series Momentum implementation that makes use of exponential moving averages.

The results obtained under this alternative strategy are similar to those obtained under our main

TSM strategy.

3 Empirical Analysis

To evaluate the performance of various strategies, we use two main risk criteria: i) the sample

period Sharpe ratio and ii) the maximum drawdown during the sample period. The Sharpe ratio

includes a risk-free rate of zero. We do this because we intend to compare a momentum strategy

with a Buy-and-Hold strategy - and the risk free rate is the same between the two (given that we

implement our strategies using futures). Any conclusion reached about the comparison would be

the same regardless of the interest rate. We also consider the maximum drawdown because it allows

us to see the asymptotic risks on the downside.

3.1 Historical Backtest

Table 3 presents a summary of the performance in the historical data, as in a conventional backtest.

By examining the Sharpe ratio, we can see that a Long-Short Momentum strategy on the S&P 500

outperforms Buy-and-Hold in-sample (1985.1-2009.12) with a lookback window of 9 or 12 months.

With shorter lookback windows it does worse. The Long-Cash Momentum on the S&P 500 out-

performs Buy-and-Hold in-sample when the lookback window is selected to be 6 months or longer.

These results hold independent of any volatility-adjustment. The in-sample peak performance of

Momentum occurs at a lookback-window of 9 months. Thus, based on the conventional backtests

one should expect out-of sample outperformance particular at this lookback horizon.
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By examining the drawdown behavior, we can instantly observe one of the drawbacks of volatil-

ity adjustment. The volatility adjusted strategies on the S&P 500 have a worse drawdown behavior

compared to the unadjusted variants. Given that these variants leverage it is not surprising. What

is a bit surprising is that this behavior is not also captured when examining the Sharpe ratio. Even

though the 9M and 12M volatility-adjusted Long-Short strategies perform better in terms at Sharpe

Ratio than both their corresponding unadjusted counterparts, they perform significantly worse in

terms of their drawdown behavior in-sample. Relative to the LS-TSM strategies on the S&P 500,

the LC-TSM strategy achieves both higher Sharpe ratios and a better drawdown behavior in-sample.

Out-of-Sample (2009.12-2018.12), all 9M and 12M strategies on the S&P 500 (vol-adjusted and

unadjusted, Long-Short and Long-Cash) underperform their corresponding Buy-and-Hold bench-

marks both in terms of Sharpe ratio and drawdown behavior. Long-Cash strategies maintain Sharpe

ratios close to the ones observed in-sample, but Long-Short Sharpe ratios collapse across different

lookback horizons. Some Long-Cash strategies without volatility adjustment outperform Buy-and-

Hold (1m and 6m) in terms of drawdown behavior.

The out-of-sample underperformance is also reflected in the overall sample where the Sharpe

ratios of the 9M and 12M unadjusted LS-TSM strategies are 0.15 lower than Buy-and-Hold (0.18).

Only the vol-adj. Long-Cash Sharpe ratios are marginally higher than their Buy-and-Hold coun-

terpart (0.21 vs. 0.20). To summarize, for the S&P 500, at a 9M horizon, all Momentum strategies

outperform Buy-and-Hold in-sample in terms of their Sharpe ratios but underperform out-of-sample.

In the next subsection, we will see that in 2009.12, our Monte-Carlo procedure would have indicated

that underperformance is a highly probably outcome in subsequent years.

Turning to the cross-asset class portfolio, we observe Momentum outperformance (relative to

Buy-and-Hold) in terms of Sharpe ratios across all strategies in-sample (1988.2-2009.12). Partic-

ularly, strategies with a 12M horizon are characterized by much higher Sharpe ratios. In terms

of drawdown behavior, all Momentum strategies outperform Buy-and-Hold. Without volatility-

adjustment, the the LC strategies beat the LS strategies. With volatility adjustment, at 12M, the
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LS strategy beats the LC strategy.

Out-of-Sample (2009.12-2018.12), the Sharpe ratios of all strategies including Buy-and-Hold are

significantly lower. At the 12M horizon, the volatility adjusted strategies slightly outperform, the

unadjusted strategies do not. Some of the other strategies underperform, some outperform. The

drawdown behavior of Momentum is better than that of Buy-and-Hold in all cases. LS and LC

perform similarly at all horizons both in terms of Sharpe ratio and drawdown behavior.

In the overall sample (2009.12-2018.12), all Momentum strategies outperform Buy-and-Hold

in terms of their drawdown behavior. At the 12M horizon the Sharpe ratios of Momentum is

higher than Buy-and-Hold. In summary, conventional backtests predict outperformance out-of-

sample of all 12M strategies which is unobserved in subsequent years. Our Monte-Carlo analysis

in the next subsection reveal the probabilities of outperformance for individual strategies. It thus

offers a rationale for why some of these 12M strategies which outperform in sample, subsequently

underperform out-of-sample, while others outperform both in- and out-of-sample.

3.2 Monte-Carlo Backtest

Table 4 presents the summary results of our Monte-Carlo analysis. We only focus on strategies

that outperform Buy-and-Hold in-sample using the conventional backtest, in order to emphasize

one of our main arguments — that in-sample outperformance does not imply out-of-sample outper-

formance or the opposite. This is because conventional backtests cannot (by construction) speak

to the probability distribution of outperformance. Hence, our focus is on the 9M strategy for the

S&P 500 and the 12M strategy for the cross-asset class portfolio.

A benefit of our methodology is by examining the distribution of returns, we can assign prob-

abilities of outperformance. The upper half of Table 4 compares the best Momentum strategy to

a Buy-and-Hold strategy on the S&P 500 using simulations created from the 1985.1-2009.12 in-

sample, to examine these (probabilities). The probabilities shown in the table are computed as the

fraction of outperforming outcomes relative to the total 10,000 simulated paths. Despite using the
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best lookback window (9M), the methodology indicates poor probabilities for outperformance.

The probability of outperforming Buy-and-Hold in terms of the Sharpe ratio is less than 10%

for the Long-Short Momentum volatility adjusted and unadjusted strategies. For the Long-Cash

strategies, the probability is better, but still less than 25%. In terms of drawdown behavior, the

probability that the two Long-Short Momentum strategies outperform is less than 25%. The prob-

ability that the Long-Cash strategies outperform is more than 50%.

It is important to notice that the probabilities are similar in terms of their qualitative predictions

across the eight models.5 For example, the Long-Short volatility un-adjusted Momentum strategy

has a probability of realizing a better Sharpe ratio of 2.6% under Model 1 and 7.2% under Model 7.

While the numbers are quantitatively distinct, both models have the same message: outperformance

is unlikely, only occurring in less than 10% of the 10,000 paths.

How do these findings relate to the findings in the historical backtests of Table 3? The simula-

tions predict that, in particular, the Long-Short strategies on the S&P 500 have a low probability

of outperforming Buy-and-Hold. This prediction also became clear in the light of the evidence in

Panel A of Figure 1 which essentially showed that in-sample outperformance was driven by a single

crisis. The Monte-Carlo predictions are realized by the out-of-sample underperformance shown in

Table 3. They also are realized by the relative out-of-sample outperformance of the Long-Cash over

the Long-Short TSM strategy.

Turning to the simulations of the cross-asset class portfolio, the lower half of Table 4 shows

the performances of various strategies with a 12M lookback window. They indicate, at best, an

approximately 50-50 chance for the Long-Short strategies to outperform Buy-and-Hold in terms of

the Sharpe ratio (Models 7 and 8). According to these models the strategies should outperform

with 75% probability in terms of their drawdown behavior. The range of probabilities across models

lie between 50% and 85% though. We do stress however, that given the 12M lookback window, we

should focus on the MA and AR models that include all the lags within the window, namely Models

5The additional 8 models that we examine in Appendix C also make similar predictions.
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7 and 8.

The Long-Cash strategies again have a higher probability of outperformance compared to the

Long-Short strategies. That is both in terms of the Sharpe ratio and drawdown behavior. In

Models 7 and 8, the outperformance probability for the Sharpe ratio is above 80%, and the prob-

ability of drawdown outperformance is greater than 95%. In the historical backtests of Table 3,

outperformance of all 12M Momentum strategies in terms of drawdown behavior occurs both in-

and out-of-sample, consistent with the Monte-Carlo simulated probabilities, and implying that this

was a highly likely outcome.

With respect to the Sharpe ratio, all portfolios deliver weak out-of-sample performance which is

mainly due to the decline in commodity prices during this period. Of the Long-Short strategies, one

strategy underperforms, while another strategy outperforms, broadly consistent with the Monte-

Carlo probabilities of 50-50. Of the Long-Cash strategies, one outperforms while another performs

similar to the Buy-and-Hold out-of-sample in Table 3. These two latter outcomes are again broadly

consistent with our Monte-Carlo probabilities that indicate an outperformance probability between

35% and 90%.

We now turn our focus on the two strategies that Monte-Carlo identifies as the best and weakest

strategies. The 9M Long-Short volatility unadjusted Momentum on the S&P 500 and the 12M

Long-Cash volatility unadjusted Momentum on the cross-asset class portfolio. Again, the in-sample

historical backtests of Table 3 suggest that both of these strategies should outperform out-of-sample

in terms of their Sharpe ratios. Figure 3 visualizes the distribution of the 10,000 cumulative returns

at the end of the simulated paths.

The Panels of this figure reveal two key problems: first, the lowest cumulative returns of the

Momentum strategy are lower than those of Buy-and-Hold, implying that the drawdown behavior

can be worse and that there are asymptotic risks attached to this strategy which the historical back-

test of Panel A of Figure 1 does not show; secondly, the peak of the cumulative return distribution

for a momentum strategy is left of that of Buy-and-Hold, implying that underperformance is more
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likely than outperformance.

The latter of these two findings is not surprising. The insignificant AR and MA parameter esti-

mates of Table 1 already suggested that evidence for structures in the data that allow for effective

Momentum strategies during 1985.1-2009.12 in the S&P 500 data is rather weak. Given the weak

significance of the estimates, and the fact that the stock market tends to increase over time, it is

not surprising to see a strategy that shorts the market sometimes underperform a strategy that is

long-only.

Figure 4 plots the cumulative return distributions for the 12M Long-Cash cross-asset class port-

folio. Two things are noteworthy. First, the Figure shows that the cumulative return of Momentum

does not fall as low as the cumulative return of Buy-and-Hold across all eight models. Secondly, the

Buy-and-Hold distribution is significantly more right-tailed than the Momentum distribution. The

former observation implies that this Momentum strategy has better drawdown behavior. The latter

observation implies that the better risk behavior (relative to Buy-and-Hold) comes at the expense

of giving up upside potential.

To summarize, by employing our Monte-Carlo approach, we can identify probabilities of out-

performance for TSM strategies relative to a benchmark. We then employed these probabilities to

rationalize findings observed in the historical data. In that data, strategies that outperformed the

benchmark in-sample tended to consequently out- or underperform out-of-sample. The Monte-Carlo

probabilities also identified the worst performing strategy (9M LS-TSM volatility unadjusted on the

S&P 500) as the one least likely to outperform.

3.3 Bootstrap Backtest

We previously listed some of the theoretical reasons why Monte-Carlo is a more appropriate proce-

dure than bootstrapping when used in examining investment strategies particularly in the context

of multi-asset portfolios. In this section, we empirically show that a bootstrapping procedure leads

to vastly different predictions compared to the Monte-Carlo simulations.
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Figure 3: Cumulative Returns (Monte-Carlo, S&P 500)
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Notes: The figure shows the distribution of the cumulative returns at the ends of the 10,000 simulated paths
for both the volatility unadjusted 9M LS-TSM strategy on the S&P 500 as well as the Buy-and-Hold strategy.
The definition of each strategy are given in Section 2.5.

Table 5 shows the results of a bootstrapping analysis in which the residuals (that were backed

out after the estimation in step 1) are randomly drawn to create 10,000 paths for each of the eight

models. For the univariate time-series (the analysis of the S&P 500), this approach leads to proba-

bilities similar to those of Table 3. This is to be expected since there is no cross-asset dependency

structure for a single asset.6 It is worth mentioning that, although the probabilities are similar, the

simulated tail events will not offer as much variety of events as under Monte-Carlo. A rare event

study such as the one conducted in Figure 1 may therefore miss the more interesting events that

can happen to a strategy.

Focusing on the cross-asset class portfolio, we observe vast differences between 5 and 3. While

the Monte-Carlo simulations imply that the 12M LS-TSM strategies have a reasonably high chance

of outperforming the benchmark, particularly, in terms of drawdown, the bootstrapping simula-

6A potential solution is cross-sectional bootstrapping whereby one draws the whole cross-section of residuals at a
certain point in time. This procedure has been employed by Kosowski et al. (2006), Fama & French (2010) and Yan
& Zheng (2017) for example, yet these approaches do not attempt to preserve the time-series structure.
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Figure 4: Cumulative Returns (Monte-Carlo, Cross-Asset Class Portfolio)
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Notes: The figure shows the distribution of the cumulative returns at the ends of the 10,000 simulated paths
for both the volatility unadjusted 12M LC-TSM strategy on the the cross-asset class portfolio as well as the
Buy-and-Hold strategy. The definition of each strategy are given in Section 2.5.

tions imply that such strategies will have a very low chance of outperforming out-of-sample both in

terms of Sharpe-ratio and drawdown behavior. In the light of the historical in- and out-of-sample

outperformance in terms of the drawdown behavior of these strategies, the bootstrapping results

are difficult to reconcile with the actual data.

Likewise, the 12M LC-TSM cross-asset class portfolio analysis seems distorted by bootstrapping.

In Model 6, for example, the Sharpe-ratio outperformance probability of the volatility adjusted strat-

egy is 52.2% under Monte-Carlo, but only 26.2% under bootstrapping. Similarly, the drawdown

behavior predictions, although qualitatively broadly consistent, substantially differ quantitatively.

Under Model 3, for example, the probability of drawdown underperformance of the volatility ad-

justed strategy is 6.8% using Monte-Carlo, but 30.5% using bootstrapping.
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4 Discussion

Conventional backtests of risk-premia strategies are mainly based on historical data. Few papers

employ simulations. Those who do rely on bootstrapping rather than Monte-Carlo methods. Boot-

strapping is problematic for at least two key reasons: i) it corrupts the time-series and cross-sectional

dependencies of a series; ii) it re-employs the same extreme residuals again and again. It is plausi-

ble, and conservative, to assume that future extreme events will look different compared to the past

and simulations should therefore employ a variety of extreme residuals. We develop a Monte-Carlo

procedure that addresses these two issues by using a combination of time-series models, empirical

residual distributions and copulas to generate new residuals with a realistic dependency structure.

We then apply this procedure to analyze a variety of Time-Series Momentum Strategies.

By analyzing such strategies first using conventional backtests, we find that some of them outper-

form a benchmark in-sample yet underperform out-of-sample, while others also outperform out-of-

sample. By construction, conventional backtests fail to tell us much about the chances to outperform

out-of-sample. In fact, a naive interpretation of a back-test would be to assume that in-sample out-

performance (underperformance) also implies out-of-sample outperformance (underperformance).

Our Monte-Carlo procedure shows the dangers of this logic by explicitly revealing a probability

distribution of strategy outcomes.

This distribution can be used to not only reconcile in-sample outperformance (underperfor-

mance) with out-of-sample underperformance (outperformance), but also in-sample outperformance

(underperformance) with out-of-sample outperformance (underperformance). Furthermore, we can

employ the probability distribution to separate robust and weaker strategies. To separate strategies,

we focused only on those strategies that outperform in-sample using conventional backtests. Our

Monte-Carlo procedure then identified one particularly weak strategy that subsequently underper-

formed out-of-sample in the historical backtest.7

7It is beyond the scope of his paper to explore this latter channel further. In the future we plan to investigate the
procedure’s ability to separate strategies more systematically.
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In addition to revealing the probability distribution, the Monte-Carlo procedure also allows us

to study possible future outcomes during tail events. As alluded to earlier, this feature of our

approach is important because historical backtests contain few tail events. In the historical back-

tests it is often a single tail event that determines a strategy’s overall performance. Figure 1, for

example, illustrates how a strategy (9M LS-TSM vol.-unadjusted on the S&P 500) might behave

during possible future tail events. The figure reveals possible Momentum Crashes in economically

bad times (when the overall market declines or moves sideways).

The simulations help us interpret whether a strategy’s outperformance is a risk premium, a

behavioral bias or a statistical artifact. For example, in the case of the 9M LS-TSM vol.-unadjusted

strategy on the S&P 500, we find that the strategy embodies sizable crash risks and also that the

observed in-sample outperformance during 1985.1-2009.12 is rather unlikely to repeat. In the case

of the 12M LC-TSM vol.-unadjusted strategy on the cross-asset class portfolio, the simulations sug-

gest that the crash risk is rather low, but that the improved risk behavior is paid for by giving up

a good part of the right tail of the cumulative return distribution. The Sharpe-ratio, a simplified

risk-return measure improves, but due to its simplicity, masks this trade-off.

What is clear is that performance can vary widely between lookback windows and assets, and

the reasons for a lookback window/asset combination to outperform or underperform, may not be

the same reasons for another. However, by looking at their empirical distributions, we see that some

strategies exhibit outcomes that have characteristics of having a risk-premium - paying to give up

crash risks (12M LC-TSM vol.-unadjusted); and some strategies seem to have outcomes that are

statistical artifacts (9M LS-TSM vol.-unadjusted). This uncertainty creates real risks in the choice

of which window/asset combination to use

We also want to highlight a potential drawback of our approach (and other simulation approaches

such as bootstrapping in general). We make the assumption that the past structure of Time-Series

Momentum will be similar to its future structure. More concretely, the assumption is that the the

estimated parameters of Table 1, the empirical distributions of Figure 2, and the Copula parameters
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will be similar in the future. While the latter two assumption are less stringent- as the empirical

distributions and copula parameters are empirically observed to be relatively constant even over

long-periods of time, the former assumption is much stronger.

Appendix B provides a robustness test of the Monte-Carlo simulations that addresses this issue.

The parameters, distributions and copula are estimated from the overall sample (-2018.12) instead

of the in-sample period (-2009.12). The Monte-Carlo implications are very consistent with those

estimated from a shorter period. The simulations again identify the two 9M LS-TSM strategies on

the S&P 500 as the weakest strategies most likely to underperform the benchmark, and the two

12M LC-TSM strategies on the cross-asset class portfolio as the most robust strategies.

Another potential drawback of our analysis is the limited choice of time-series models that we

have employed. While the eight AR and MA models that we use are a natural fit in the context of

Time-Series Momentum, it is not clear whether Momentum may also be connected to heteroskedas-

ticity of error terms. Appendix C addresses this issue by employing a set of eight additional models

that use asymmetric GARCH models. The Monte-Carlo computations shown in Table 9 are again

very consistent with the main computations shown in Table 9. The outperformance probability of

Momentum is slightly higher across strategies, which confirms our prior that heteroskedasticity may

also be a factor behind Momentum.

Finally, we need to keep in mind, that absence of evidence is not evidence of absence. In the

analysis, we use a variety of statistical time-series models to describe historical asset returns. Based

on these models, and using simulations, we observe that some of these Momentum strategies such

as the 9M LS-TSM strategies on the S&P 500 underperform in the majority of cases. Thus, we find

absence of evidence for Momentum outperformance in these strategies - yet we cannot confidently

reject Momentum outperformance as the time-series models that we use potentially do not capture

the deeper reason for why Momentum works. Unfortunately, there may be a statistical dimension

important for Momentum that these models simply miss.
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5 Conclusions

Tail events are important drivers for the performance of many investment strategies. Historical data

contain few tail events. Conventional backtests that rely on such data therefore have difficulties

informing us about i) the true risks involved in a strategy and ii) the long-run chance of a strategy

outperforming a benchmark.

We develop a Monte-Carlo backtesting procedure amenable to analyzing risk-premia strategies.

Our approach combines elements from the risk management literature with elements from a small

literature that uses bootstrap procedures to test risk-premia strategies. It overcomes two key lim-

itations of standard bootstrapping procedures that i) corrupt the time-series and cross-sectional

dependencies of returns and ii) re-employ the same extreme residuals again and again.

Our method involves parameterizing several plausible time-series processes by fitting them to

actual data, empirically estimating the distributions of the residuals and the residual dependencies

across assets using copulas to create new generic residuals. We then backward transform our gen-

erated residuals, using the empirical distributions and time-series processes, to create returns with

statistical properties similar to those of the original data.

We illustrate our approach by analyzing a set of investment strategies called Time-Series Momen-

tum (TSM). We show that our approach reveals both the out-of-sample risks of such strategies and

the probability of their outperformance in the long-term. We find that strategies that outperform

in-sample using historical backtests may, out-of-sample, underperform or outperform consistent with

the predictions of our simulations. We also use this additional information to categorize different

TSM strategies as a risk-premia strategy or a statistical artifact. In the future we plan to examine

other risk-premia strategies using this approach.
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A Robustness: An Alternative TSM Strategy

As a robustness test we consider an alternative implementation of Time-Series Momentum. As an estimator for the

trend, ξj,t−1, of asset j we use the exponential weighted moving average of past observations,

ξj,t−1 = ∑
∞

k=1 λ
kqj,t−k

∣∑∞

k=1 λ
kqj,t−k ∣

(10)

where λ ∈ (0,1) is a parameter that governs the decay. We examine a variety of parameters that are in the

neighborhood of those parameters that (ex-post) lead to the highest Sharpe ratios in the in-sample backtests, i.e.

λ ∈ {0.99,0.95,0.90,0.85,0.80}. A higher (lower) λ gives more (less) weight to more recent return realizations. We

calculate the Long-Short EMA strategy (LS-EMA) return as:

qLS−EMA,t =
1

∣J ∣ ∑j∈J
[exp(rj,t) − 1] × ξj,t−1. (11)

where qLS−EMA,vol−adj,t = 1
∣J ∣ ∑j∈J φj,t−1 × [exp(rj,t) − 1] × ξj,t−1 is the volatility adjusted variant. If the estimated

trend is negative, the exposure becomes short. If the trend is positive the exposure is long. We also implement a

Long-Cash EMA (LC-EMA). More specifically, the return to this strategy is given by

qLC−EMA,t =
1

∣J ∣ ∑j∈J
[exp(rj,t) − 1] ×max{ξj,t−1,0} . (12)

where qLC−EMA,vol−adj,t = 1
∣J ∣ ∑j∈J φj,t−1 × [exp(rj,t) − 1] × max{ξj,t−1,0} is the volatility adjusted variant. Table 6

shows the historical backtest results and 7 shows the Monte-Carlo backtests. Table 6 shows that the peak performance

(in terms of the Sharpe ratio) for Momentum strategies on the S&P 500 and the cross-asset class portfolio occurs at λ =

0.85. The results are similar to those results from Table 3: i) in-sample outperformance does not necessarily translate

into out-of-sample outperformance ii) strategies with volatility leveraging exhibit a weaker drawdown behavior than

strategies that are volatility unadjusted.

Focusing on the most successful strategies (those with λ = 0.85), Table 7 again emphasizes that the Long-Short

strategies on the S&P 500 are likely to underperform while the Long-Cash strategies fair better. Turning to the

strategies on the cross-asset class portfolio, here too, Monte-Carlo highlights the Long-Cash strategies as superior

to their Long-Short counterparts both in terms of their drawdown behavior and their long-run Sharpe-ratios. The

cross-asset class Long-Cash strategies are also the best performing ones by some distance. Overall, the Monte-Carlo

results derived from this alternative Momentum implementation are quantitatively similar to those found in Table 4.
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B Robustness: Monte-Carlo Results for the Overall Sample

As pointed out in the discussion of Section 4, one potential drawback of our analysis is that it makes the implicit

assumption that parameter estimates of the times series processes, the empirical distributions and the residual depen-

dency structure remains stable. As a robustness test, Table 8 shows how the Monte-Carlo simulations turn out once

the features are estimated from the overall sample not just, the in-sample period. The table confirms that parameter

stability is not concern: it shows that the Monte-Carlo computations are consistent with those obtained in-sample in

Table 4. In Table 8, the 9M LS-TSM strategies on the S&P 500 are least likely to outperform, while the LC-TSM

strategies on the cross-asset class futures portfolio are most likely to outperform. Furthermore, the results are also

quantitatively very similar.
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C Robustness: Alternative Time-Series Models

The AR and MA models by themselves do not assume any sophisticated volatility dynamics. However, stock returns

empirically exhibit heteroskedasticity, and exhibit a negative correlation with lagged volatility in what is known as the

leverage effect Black (1976). We use the asymmetric EGARCH model as in Nelson (1991) to model these dependencies,

as the conditional variance responds asymmetrically to positive and negative shocks. Under an EGARCH(P,Q) process,

he conditional variance of asset j has the form

logσ2
j,t = κj +

P

∑
i=1

γj,i logσ2
j,t−i +

Q

∑
k=1

αj,k (
∣εj,t−k ∣
σj,t−k

−E( ∣εj,t−k ∣
σj,t−k

)) +
Q

∑
k=1

ψj,k
εj,t−k
σj,t−k

, (13)

where κj is the conditional variance model’s constant, γj,i is the GARCH component coefficient, αj,k is the ARCH

component coefficient and ψj,k is the leverage component coefficient. As an alternative asymmetric GARCH model

we also employ the GJR model of Glosten et al. (1993). Under an GJR(P,Q) process, the conditional variance of

asset j has the form

σ2
j,t = κj +

P

∑
i=1

γj,iσ
2
j,t−i +

Q

∑
k=1

αj,kε
2
j,t−k +

Q

∑
k=1

ψj,kI[εj,t−k < 0]ε2j,t−k, (14)

where the binary indicator I[εt−1 < 0] = 1, and 0 otherwise; κj is the conditional variance model’s constant, γj,i is the

GARCH component coefficient, αj,k is the ARCH component coefficient and ψj,k is the leverage component coefficient.

Table 9 shows the results for a set of eight alternative time-series models: Model 9: AR(3)-EGARCH(1,1); Model 10:

MA(3)-EGARCH(1,1); Model 11: ARMA(3,3); Model 12: ARMA(3,3)-EGARCH(1,1); Model 13: ARMA(3,3)-

GJR(1,1); Model 14: ARMA(3,3)-EGARCH(1,3); Model 15: AR(12)-EGARCH(1,3); Model 16: MA(12)-

EGARCH(1,3). The Table shows that the Monte-Carlo computations are consistent with those obtained under

Models 1-8 in Table 4. Namely, the 9M LS-TSM strategies on the S&P 500 are least likely to outperform, while

the LC-TSM strategies on the cross-asset class futures portfolio are most likely to outperform. The Table shows

that the obtained probabilities slightly increase (compare Models 15 and 16 with Models 7 and 8), indicating that

heteroskedasticity plays some role in generating Momentum.
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D Robustness: Degrees of Freedom of the Student’s t-Copula

A legitimate concern is that our results are sensitive to the Student’s t-copula’s estimated degrees of freedom (DoF).

The financial crisis, for example, has revealed that the use of the Gaussian copula (Student’s t-copula with DoF =∞)

as a statistical tool to price and manage the risks of Collateralized Debt Obligations (CDOs) is highly problematic, see

e.g. Li (2000) and MacKenzie & Spears (2014). To show that our results for the cross asset class portfolio are robust

to varying the copula form, we run the simulations with i) the Student’s t-copula estimated DoF×2 ii) the Student’s

t-copula estimated DoF×0.5. Table 10 shows the results. This table is qualitatively consistent with the results from

Table 4 in the sense that the new table also predicts the i) LC-TSM strategy to outperform the LS-TSM strategy

according to both risk measures ii) the LC-TSM strategy to outperform Buy-and-Hold in particular under Models 7

and 8. Quantitatively, the results exhibit only marginal deviations from those of Table 4 (within 5 percentage points).
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